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ABSTRACT
The self-adjusting (1 + (λ, λ)) GA is the best known genetic algo-
rithm for problems with a good fitness-distance correlation as in
OneMax. It uses a parameter control mechanism for the param-
eter λ that governs the mutation strength and the number of off-
spring. However, on multimodal problems, the parameter control
mechanism tends to increase λ uncontrollably.

We study this problem and possible solutions to it using rigorous
runtime analysis for the standard Jumpk benchmark problem class.
The original algorithm behaves like a (1+n) EA whenever the maxi-
mum value λ = n is reached. This is ineffective for problems where
large jumps are required. Capping λ at smaller values is beneficial
for such problems. Finally, resetting λ to 1 allows the parameter
to cycle through the parameter space. We show that this strategy
is effective for all Jumpk problems: the (1 + (λ, λ)) GA performs
as well as the (1 + 1) EA with the optimal mutation rate and fast
evolutionary algorithms, apart from a small polynomial overhead.

Along the way, we present new general methods for bound-
ing the runtime of the (1 + (λ, λ)) GA that allows to translate ex-
isting runtime bounds from the (1 + 1) EA to the self-adjusting
(1 + (λ, λ)) GA. Our methods are easy to use and give upper bounds
for novel classes of functions.
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1 INTRODUCTION
Parameter control mechanisms are non-static parameter choices
that aim to identify parameter values that are optimal for the cur-
rent state of the optimisation process. In continuous optimisation,
parameter control such as step-size adaptation is vital to ensure
convergence to the optimum. In the discrete domain, parameter
control is much less common and we are just beginning to under-
stand the benefits that parameter control can provide. There have
been several examples where parameter control mechanisms were
proposed, along with proven performance guarantees.

Böttcher et al. [5] showed that fitness-dependant mutation rates
can improve performance of the (1 + 1) EA on LeadingOnes by a
constant factor. Badkobeh et al. [2] presented an adaptive strategy
for the mutation rate in the (1+λ) EA that, for all values of λ, leads to
provably optimal performance on OneMax. Lässig and Sudholt [26]
presented adaptive schemes for choosing the offspring population
size in (1+λ) EAs and the number of islands in an island model.
Doerr et al. [16] showed that a success-based parameter control
mechanism is able to identify and track the optimal mutation rate
in the (1+λ) EA on OneMax, matching the performance of the best
known fitness-dependent parameter [2]. Similarly Doerr et al. [19]
presented that a self-adaptive mechanism for the mutation rate in
the (1,λ) EA with a sufficiently large λ has the same asymptotic
expected runtime on OneMax as in [2]. Mambrini and Sudholt [32]
adapted the migration interval in island models and showed that
adaptation can reduce the communication effort beyond the best
possible fixed parameter. Doerr et al. [15] proved that a success-
based parameter control mechanism based on the 1/5 rule is able
to achieve an asymptotically optimal runtime on LeadingOnes.
Lissovoi et al. [31] propose a Generalised Random Gradient Hyper-
Heuristic that can learn to adapt the neighbourhood size of Random
Local Search optimally during the run on LeadingOnes, proving
that it has the best possible runtime achievable by any algorithm
that uses the same low level heuristics. Doerr and Doerr give a
comprehensive survey of theoretical results [13].

One of the most successful implementations of parameter control
mechanisms is the self-adjusting (1 + (λ, λ)) GA [14], which is the
fastest known unbiased genetic algorithm on OneMax and has
shown excellent performance on NP-hard problems like MaxSat in
both empirical [21] and theoretical studies [6]. The (1 + (λ, λ)) GA
first creates λmutants by a process similar to a standard bitmutation
with mutation rate λ/n (the only difference to standard GAs being
that all mutants flip the same number of bits). Then it picks the
best mutant and performs λ crossovers with the original parent.
A biased uniform crossover is used that independently picks each
bit from the mutant with probability 1/λ. If the best search point
created by crossover is at least as good as the parent, the former
replaces the latter. The parameter λ is key to the performance of the
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(1 + (λ, λ)) GA as it governs the number of offspring, the mutation
rate and the crossover bias.

The self-adjusting (1 + (λ, λ)) GA uses the 1/5-th success rule
to adjust λ. Doerr and Doerr [12] proved that the algorithm only
needsO(n) expected function evaluations on OneMax, breaking the
Θ(n logn) barrier that applies to all mutation-only algorithms [29].
The time of O(n) is asymptotically the best runtime possible for
any static or dynamic parameter setting on the (1 + (λ, λ)) GA.
Doerr and Doerr [12] point out that this was the first success-based
parameter control mechanism proven to reduce the optimisation
time of an algorithm by more than a constant factor, compared to
optimal static parameter settings.

Goldman and Punch [21] reported excellent performance for the
self-adjusting (1 + (λ, λ)) GA on random instances of the maximum
satisfiability problem, and a similar setting was studied by Buzdalov
and Doerr [6]. In the latter analysis it was shown that the algorithm
is effective on instances with good fitness-distance correlation,
however on instances with low fitness-distance correlation the
algorithm’s performance decays. Antipov et al. [1] analysed the
algorithm on LeadingOnes to understand better the behaviour on
functions with low fitness-distance correlation. They showed that
the self-adjusting (1 + (λ, λ)) GA has the same asymptotic runtime
as the (1 + 1) EA, but the hidden constants seem to be very large.
Other empirical studies [20, 23] corroborated that the self-adjusting
mechanism does not behave well on problems with low fitness-
distance correlation or local optima.

Several of the above works identified that the issue lies in the
parameter control mechanism used. On functions with low fitness-
distance correlation, the algorithm can get stuck in situations where
λ diverges to its maximum value λ = n, and then performance
deteriorates.

Goldman and Punch [21] suggested to restart the parameter λ
to 1 when λ = n but also restart the search from a random individual.
In Buzdalov and Doerr [6] the authors proposed capping the value
of λ depending on the fitness-distance correlation of the problem
at hand. Lastly, in [3, 4] the authors proposed a modification where
the growth of λ is slowed down for long unsuccessful runs, while
still letting the algorithm increase the parameter indefinitely. It
achieves this by resetting λ to the parameters of its last successful
generation after a certain number of unsuccessful generations and
letting the algorithm increase λ a bit more every time it is reset.

At the moment, it is not clear which of these modifications is
the best choice. Previous research is fragmented and most of the
modifications proposed have only been studied empirically. We
seek to provide more clarity by providing a comprehensive analysis
of different approaches for parameter control in the self-adjusting
(1 + (λ, λ)) GA. We consider the Jumpk benchmark problem class,
a class of multimodal problems on which evolutionary algorithms
typically have to make a jump to the optimum at a Hamming dis-
tance of k . The parameter k means that Jumpk has an adjustable
difficulty and thus represents a whole range from easy to difficult
multimodal and even deceptive problems. It was also the first prob-
lem for which a drastic advantage from using crossover could be
proven with mathematical rigour [24]. More recent analyses have
shown that crossover can reduce the runtime to O(nk−1 logn) [11]
and O(n logn + 4k ) using additional diversity mechanisms [10].

We first present a general method for obtaining upper bounds
on the expected optimisation time of the original (1 + (λ, λ)) GA,
based on the fitness-level method, in Section 3. Despite its simplicity,
we show that it gives tight bounds, up to lower-order terms, on
Jumpk functions. Our lower bounds in Section 4 show that the
original (1 + (λ, λ)) GA does not benefit from crossover on Jumpk
functions. Subsequently in Section 5 we analyse the performance
change when λ is capped to a value less than n, providing a method
to analyse any parameter choice λmax. We also show that capping
λ can improve the performance of the algorithm, but its behaviour
is highly dependant on the choice of λmax defying the point of
using a parameter control mechanism. Finally in Section 6, we
analyse the benefits of resetting λ. With this strategy the algorithm
is able to traverse the parameter space, instead of getting stuck with
a certain parameter, benefiting the algorithm’s behaviour when
encountering local optima. In particular with a clever selection
of the update factor F we show that for Jumpk the runtime of the
algorithm is onlyO(n2/k) slower than the runtime of the (1 + 1) EA
with optimal parameter choice.

2 PRELIMINARIES
We use runtime analysis to analyse the performance of the self-
adjusting (1 + (λ, λ)) GA on n-dimensional pseudo-Boolean func-
tions f : {0, 1}n → R. We consider both the random number of
fitness evaluationsT eval until a global optimum is found (also called
optimisation time or runtime) as well as the random number of
generationsT gen. The former reflects the total computational effort,
whereas the latter is more relevant when the execution and the
generation of offspring can be parallelised efficiently.

In the following, we write H (x, x∗) to denote the Hamming dis-
tance between bit strings x and x∗. By B(n,p) we denote the bino-
mial distribution with parameters n ∈ N and p ∈ [0, 1].

The self-adjusting (1 + (λ, λ)) GA is a crossover-based evolution-
ary algorithm that uses a mutation phase with a mutation rate
higher than usual to assist exploration and a crossover phase as a
repair mechanism. During the mutation phase the parent is mu-
tated λ times, using a mutation operator called flipℓ(x). It chooses ℓ
different bit positions in x uniformly at random and then it flips the
values in those bits to create the mutated bit string. Each mutation
phase the variable ℓ is sampled only once from a binomial distribu-
tion B(n, λn ), causing all mutation offspring have the same distance
to the parent. Afterwards, during the crossover phase the algorithm
creates λ offspring by applying a biased uniform crossover called
crossc (x, x ′) between the parent x and the best offspring from the
mutation phase x ′. The crossover operator works as follows: for
each bit position, it selects the bit value from x ′ with probability
c = 1

λ and from x otherwise. After the crossover phase, the algo-
rithm performs an elitist selection using only the offspring from
the crossover phase and the parent.

The algorithm adjusts λ every generation with a multiplicative
update rule, where λ is multiplied by a factor F 1/4 if there is no
improvement in fitness and divided by F otherwise. The parameter
λ has an upper limit λmax which is commonly set to n.

In this work we use a small variation of the algorithm, shown in
Algorithm 1, where during the selection step the best offspring from
the mutation phase is also considered. This modification has been
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suggested before in [7, 21] as a way to improve the performance of
the (1 + (λ, λ))GA.We believe (and tacitly take for granted) that this
change does not invalidate previous theoretical runtime guarantees
on problems such as OneMax [12] and LeadingOnes [1]1.

Carvalho Pinto and Doerr [7] presented refinements of the
(1 + (λ, λ)) GA that they call implementation-aware; these can save
unnecessary evaluations and decrease some runtime results by con-
stant factors. We consider the original (1 + (λ, λ)) GA for simplicity,
and since we are interested in larger performance differences.

Considering the best offspring from the mutation phase is par-
ticularly helpful when the algorithm needs to make large jumps,
as when encountering with local optima. In fact, in Section 4 we
show that for large jumps the crossover phase is not very helpful
for reaching a higher fitness level, because the crossover phase tend
to search near the current parent while the large mutations during
the mutation phase can more easily jump out of local optima.

The Jumpk benchmark problem class is a class of unitation func-
tions, that is, functions that only depend on the number of 1-bits in
a bit string, denoted as |x |:

Jumpk (x) :=
{
n − |x | if n − k < |x | < n

k + |x | otherwise

The Jumpk function increases its fitness value with the first n − k
1-bits in the bit string, reaching a plateau of local optima that all
have n − k 1-bits. Larger numbers of 1-bits leads to a valley that
contains the lowest fitness values in all the function. The fitness
value in the valley decreases when adding 1-bits, with the minimum
fitness neighboring the global optimum. The optimum is the bit
string 1n .

3 FITNESS-LEVEL UPPER BOUNDS FOR THE
SELF-ADJUSTING (1 + (λ, λ)) GA

The self-adjusting (1 + (λ, λ)) GA has only been analysed theoreti-
cally on easy unimodal functions like OneMax [12] and Leading-
Ones [1] as well as random satisfiability instances [6]. Despite these
analyses we do not have a clear understanding of its behaviour on
other problem settings, especially when it encounters local optima.

In this section we give a new general method to find upper
bounds for the runtime of the self-adjusting (1 + (λ, λ)) GA using
previously known runtime bounds from the (1 + 1) EA. It is based
on the observation that, when λ hits its maximum value of λ = n,
the algorithm temporarily performs n standard bit mutations and
thus simulates a generation of a (1+n) EA.

In a nutshell, the fitness-level method uses so-called f -based
partitions, which is a partition of {0, 1}n into sets A1, . . . ,Am+1
where all search points inAi are strictly worse than all search points
in Ai+1 and Am+1 contains all global optima. For the (1 + 1) EA,
we derive an upper bound as follows. Suppose that we know that
for every search point x ∈ Ai , the probability of finding a search
point in a higher fitness-level set is at least si , for some expression
si > 0. Then the expected time for leaving set Ai is at most 1/si .
1For OneMax, Doerr and Doerr [12] confirm this fact without proof. Analyses on
OneMax and LeadingOneswere based on drift analysis, and the drift can only increase
if additional opportunities for improvements are considered. It is less clear how this
affects the self-adjusting mechanism; however, previous analyses have shown that the
(1 + (λ, λ)) GA is very robust in tracking the best parameter setting for these easy
unimodal functions and we believe this will still be the case with the modification.

Algorithm 1: The self-adjusting (1 + (λ, λ)) GA [14]
1 Initialization: Sample x ∈ {0, 1}n uniformly at random;
2 Initialize λ← 1, p ← λ/n, c ← 1/λ;
3 Optimization: for t = 1, 2, . . . do
4 Mutation phase:
5 Sample ℓ from B(n,p);
6 for i = 1, . . . , λ do
7 Sample x (i) ← flipℓ(x) and query f (x (i));
8 Choose x ′ ∈ {x (1), . . . , x (λ)} with

f (x ′) = max{ f (x (1)), . . . , f (x (λ))} u.a.r.;
9 Crossover phase:

10 for i = 1, . . . , λ do
11 Sample y(i) ← crossc (x, x ′) and query f (y(i));
12 If exists, choose y ∈ {x ′,y(1), . . . ,y(λ)}\{x} with

f (y) = max{ f (x ′), f (y(1)), . . . , f (y(λ))} u.a.r.;
13 otherwise, set y := x ;
14 Selection and update step:
15 if f (y) > f (x) then x ← y; λ← max{λ/F , 1};
16 if f (y) = f (x) then x ← y; λ← min{λF 1/4, λmax};
17 if f (y) < f (x) then λ← min{λF 1/4, λmax};

Since every fitness level has to be left at most once, the expected
optimisation time of the (1 + 1) EA is at most

∑m
i=1 1/si .

The fitness-level method is a simple and versatile method in its
own right, and it allows researchers to translate bounds on the
runtime of the simple (1 + 1) EA to other elitist algorithms. This
has been achieved for parallel evolutionary algorithms [28], ant
colony optimisation [22, 33], and particle swarm optimisation [35].
It further gives rise to tail bounds [37] and lower bounds [34], and
the principles extend to non-elitist algorithms as well [9, 17].

Fitness levels may contain search points of different fitness. In
the special case where each set Ai contains search points with only
one fitness value the partition is called a canonical partition.

The following theorem gives a fitness-level upper bound tailored
to the (1 + (λ, λ)) GA.

Theorem 3.1. Given an arbitrary f -based partitionA1, . . . ,Am+1.
Let d be the number of non-optimal fitness values, F > 1 constant,
and si a lower bound for the (1 + 1) EA finding an improvement

from any search point in fitness level Ai . Then for the self-adjusting

(1 + (λ, λ)) GA we have

E

(
T eval

)
≤ O(dn) + 2

m∑
i=1

1
si

and

E

(
T gen) ≤ 4 logF (n) + 6d +

1
n

m∑
i=1

1
si
.

To prove Theorem 3.1, we analyse the time the algorithm spends
in generations with λ < n and those in generations with λ = n.

In the following, we refer to a generation that improves the
current best fitness as successful and otherwise as unsuccessful. We
show that a logarithmic number of unsuccessful generations is
sufficient to reach the maximum λ value.
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Lemma 3.2. Let F > 1, F = O(1), λinit ∈ [1,n) and λinit <
λnew ≤ n. If in every generation f (y) ≤ f (x), the self-adjusting

(1 + (λ, λ)) GA needs at most 4 logF
(
λnew
λinit

)
unsuccessful generations

to grow λ from λinit to λnew. During these generations the algorithm

makes O
(

λnew
F 1/4−1

)
evaluations.

If F = 1+Ω(1) then the number of generations isO(logn) and the
number of evaluations is O(n).

Proof. After i unsuccessful generations the offspring popula-
tion size is updated by λnew = λinit · F i/4. The number of unsuc-
cessful generations needed is thus

4 logF
(
λnew
λinit

)
≤ 4 logF (λnew) ≤ 4 logF (n).

During these generations, the number of evaluations is at most:

2
4 logF (λnew)∑
i=4 logF (λinit)

(
F 1/4

)i
= 2

(
F 1/4

)4 logF (λnew)+1
−

(
F 1/4

)4 logF (λinit)
F 1/4 − 1

=
2
(
F 1/4λnew − λinit

)
F 1/4 − 1

= O

(
λnew

F 1/4 − 1

)
For F = 1 + Ω(1), 4 logF (n) = 4 log(n)/log(F ) = O(logn) and
O

(
λnew
F 1/4−1

)
= O(n). □

Now we bound the number of generations in which the self-
adjusting (1 + (λ, λ)) GA operates with λ < n. To do so, we take
into account that the algorithm will not need to increase from λinit
every time since we only decrease λ by a factor F each time we find
an improvement.

Lemma 3.3. Let F > 1, λmax ≤ n, and d be the number of non-

optimal fitness values of an arbitrary fitness function. The maximum

number of generations in which the self-adjusting (1 + (λ, λ)) GA
uses λ < λmax is at most 4 logF (λmax) + 5d . These generations lead
to O

(
dn + n

F 1/4−1

)
evaluations.

Proof. In every successful generation, λ is decreased to
max{1, λ/F } and otherwise it is increased to min{n, λ · F i/4}.

We use the accounting method [8, Chapter 17] to account for all
generations with λ < λmax. The basic idea is to create a fictional
bank account to which operations are being charged. Some oper-
ations are allowed to pay excess amounts, while others can take
money from such accounts to pay for their costs. Provided that no
fictional account gets overdrawn the total amount of money paid
bounds the total cost of all operations.

We start with a fictional bank account and pay costs of
4 logF (λmax), since that is the maximum number of consecutive
unsuccessful generations before reaching λ = λmax (Lemma 3.2).

In a successful generation, we pay costs of 1 to cover the cost
of the generation, and deposit an additional amount of 4 to the
fictional bank account, which will be used to pay for 4 unsuccessful
generations needed to increase λ to its original value. Unsuccess-
ful generations that increase λ may withdraw 1 from the fictional
account and pay for the cost of this generation. Unsuccessful gener-
ations where λ = λmax are not charged since they are not counted.

We now need to prove that the fictional bank account is never
overdrawn. For any point in time, the number of generations where
λ increases is bounded byT inc ≤ 4 logF (n)+4T dec whereT dec is the
number of generations decreasing λ. This holds by Lemma 3.2 and
the fact that one successful generation that decreases λ compensates
for 4 unsuccessful generations that may increase λ. Considering the
initial payment of 4 logF (n) and transactions for each generation,
the current balance is

4 logF (n) −T
inc + 4T dec ≥ 0,

that is, the account is never overdrawn. The number of generations
with λ < λmax is thus bounded by the sum of all payments. There
can only be d successful generations, hence the sum of payments
is at most 4 logF (n) + 5d .

It remains to bound the number of evaluations. Since we ini-
tialise with λ = 1, there must be 4 logF (n) generations t1, t2, . . .
such that during generation ti , we have λ ≤ F i/4. From Lemma 3.2,
we know that during these 4 logF (λmax) generations, the algorithm
will use O

(
n

F 1/4−1

)
evaluations. Adding to this, in the other at

most 5d possible generations, the maximum number of evalua-
tions per generation is bounded by 2λmax. Therefore the algorithm
will use O

(
dλmax + n

F 1/4−1

)
= O

(
dn + n

F 1/4−1

)
evaluations with

an offspring population size λ < λmax. □

With Lemma 3.3 now we have the tools necessary to analyse the
runtime of Algorithm 1.

Proof of Theorem 3.1. Owing to Lemma 3.3, we can focus on
bounding the time spent in generations with λ = n. In these gener-
ations, the mutation rate is p = λ/n = 1 and thus all bits are flipped
during mutation. When the current search point is x , mutation
thus produces its binary complement, x . The crossover phase uses
a crossover bias of 1/n, which means that each bit is independently
taken from the mutant x with probability 1/n and otherwise it is
taken from x . This is equivalent to a standard bit mutation with the
default mutation rate of 1/n. Given that λ = n, during the crossover
phase the algorithm creates n independent offspring using standard
bit mutation. The crossover phase is then equivalent to the output
of a (1+n) EA.

For each fitness level we calculate the number of generations
the (1 + (λ, λ)) GA spends on this level while λ = n and the
(1 + (λ, λ)) GA essentially simulates a (1+n) EA. (We pessimisti-
cally ignore the fact that such a situation may not be reached at all;
especially on easy problems, λ may not hit the maximum value be-
fore the optimum is found.) We argue as in Lässig and Sudholt [27,
Theorem 1] to derive a fitness-level bound for the (1+n) EA. The
probability that there is one of n offspring that finds a better fitness
level is at least (using s(n)i to denote an amplified success probability
with n offspring)

s
(n)
i = 1 − (1 − si )n ≥ 1 −

(
1

1 + sin

)
=

sin

1 + sin

and the expected number of generations to leave Ai using λ = n is
at most 1/s(n)i . Adding the generations with λ = n over all fitness
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levels and the generations spent with λ < n, we get

E
(
T gen) ≤ 4 logF (n) + 5d +

m∑
i=1

(
1 + 1

sin

)
≤ 4 logF (n) + 6d +

1
n

m∑
i=1

1
si

where the last step usedm ≤ d , that is, the number of fitness levels
is bounded by the number of fitness values.

By Lemma 3.3, the number of evaluations used with λ < n is
O(dn) when F = 1 + Ω(1). Since with λ = n each generation leads
to 2n evaluations2, multiplying the above bound yields the claimed
bound on the number of evaluations. □

We show how to apply Theorem 3.1 to obtain novel bounds on
the expected optimisation time of the (1 + (λ, λ)) GA, including the
Jumpk function class.

Theorem 3.4. The expected optimisation time E

(
T eval

)
of the

self-adjusting (1 + (λ, λ)) GA with constant F > 1 is at most

(a) E
(
T eval

)
= O(nn/|OPT|) and E (T gen) = O(nn−1/|OPT|) on

any function with d non-optimal function values, and a set

OPT of global optima

(b) E
(
T eval

)
= O(dn) and E (T gen) = O(d + logn) on unimodal

functions with d + 1 fitness values
(c) E

(
T eval

)
= (1 + o(1)) · 2nk (1 − 1/n)−n+k and E (T gen) =

(1 + o(1)) · 2nk−1 (1 − 1/n)−n+k on Jumpk with k ≥ 3.

Proof. For the general upper bound, we use a fitness level parti-
tion with A1 containing all non-optimal fitness values and A2 con-
taining the set OPT. We use the corresponding success probability
si ≥ |OPT|/nn . With this we bound

∑m
i=1

1
si = O(nn/|OPT|). The

term O(dn) can be absorbed since d ≤ 2n and nn/|OPT| ≥ (n/2)n .
For unimodal functions, we use a canonical f -based partition and

success probabilities of si ≥ 1/n · (1− 1/n)n−1 ≥ 1/(en). This yields
E

(
T eval

)
≤ O(dn) + 2

∑d
i=1 en = O(dn). For the expected number

of generations, we get E (T gen) ≤ 4 logF (n) + 6d + 1
n

∑d
i=1 en =

O(d + logn).
For Jumpk functions with k ≥ 2 any individual that is not a

local or global optimum can find an improvement by increasing or
decreasing the number of 1-bits. This yields success probabilities
of at least (n − i)/(en) for all search points with 0 ≤ i < n − k ones
and of at least i/(en) for all search points with n − k < i < n ones.
For search points with n−k ones, a standard bit mutation can jump
to the optimum by flipping the correct k 0-bits and not flipping
any other bit. This has a probability sn−k = (1/n)k (1 − 1/n)n−k .
Hence,

E
(
T eval

)
≤ O(n2) + 2nk

(
1 − 1

n

)−n+k
= (1 + o(1)) · 2nk

(
1 − 1

n

)−n+k
□

2This value can be reduced to n + 1 if identical mutants are not evaluated, following
ideas similar to Carvalho Pinto and Doerr [7]

4 THE (1 + (λ, λ)) GA IS INEFFICIENT ON JUMP
We now show that the bound for the (1 + (λ, λ)) GA on Jumpk
from Theorem 3.4 (c) is asymptotically tight. This implies that the
(1 + (λ, λ)) GA is no more efficient on Jumpk than the (1 + 1) EA
and less efficient than other GAs using crossover [10, 11, 24].

Theorem 4.1. Let F > 1 be a constant. The expected optimisa-

tion of the self-adjusting (1 + (λ, λ)) GA on the Jumpk function with

4 ≤ k ≤ (1 − ε)n/2, for any constant ε > 0, is

(1 − o(1)) · 2nk
(
1 − 1

n

)−n+k
.

We first show the following upper and lower bounds on the prob-
ability that the (1 + (λ, λ)) GA will find any particular target search
point x∗ during one mutation phase. Even though we only need
the upper bounds in this section, the lower bounds on transition
probabilities will be useful later on.

Lemma 4.2. For every current search point x , every target search

point x∗ and every current parameter λ, let pλmut(x, x
∗) be the proba-

bility that the (1 + (λ, λ)) GA creates x∗ during the mutation phase

of one generation.

If x∗ ∈ {x, x}, pλmut(x, x
∗) = (λ/n)H (x ,x

∗)(1 − λ/n)n−H (x ,x
∗)
.

Otherwise,
λ
2 (λ/n)

H (x ,x ∗)(1 − λ/n)n−H (x ,x
∗) ≤ pλmut(x, x

∗) and

pλmut(x, x
∗) ≤ λ(λ/n)H (x ,x

∗)(1 − λ/n)n−H (x ,x ∗).

The term (λ/n)H (x ,x ∗)(1 − λ/n)n−H (x ,x ∗) equals the probability
of a standard bit mutation with mutation probability λ/n creating
x∗ from x . If x∗ < {x, x}, the offspring population of λ ampli-
fies this probability by a factor within [λ/2, λ]. If x∗ ∈ {x, x}, the
(1 + (λ, λ)) GA does not benefit from its offspring population at all.

Proof of Lemma 4.2. The algorithm needs to sample ℓ =
H (x, x∗), in order to find x∗ during the mutation phase. The proba-
bility of this happening is

Pr
(
ℓ = H (x, x∗)

)
=

(
n

H (x, x∗)

)
(λ/n)H (x ,x

∗) (1 − λ/n)n−H (x ,x
∗)

(1)
If x∗ ∈ {x, x},

( n
H (x ,x ∗)

)
= 1 and the claim for this case follows as

all λ mutants will create x∗ for the right choice of ℓ.
Otherwise, the (1 + (λ, λ)) GA also needs to flip the correct bits

during the mutation phase. Since there are
( n
H (x ,x ∗)

)
possible ways

to flip the bits the probability that one offspring flips the correct bits
is

( n
H (x ,x ∗)

)−1. This gives us the following probability of finding x∗
during λ mutations, conditional on ℓ = H (x, x∗):

Pr
(
x∗ | ℓ = H (x, x∗)

)
= 1 −

(
1 − 1/

(
n

H (x, x∗)

))λ
.

This is bounded from above by

λ/

(
n

H (x, x∗)

)
and bounded from below using (1 + x)r ≤ 1

1−rx as

λ/
( n
H (x ,x ∗)

)
1 + λ/

( n
H (x ,x ∗)

) ≥ λ/
( n
H (x ,x ∗)

)
2
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where the last inequality follows from
( n
H (x ,x ∗)

)
≥ n and thus

1 + λ/n ≤ 2. Since

pλmut(x, x
∗) = Pr

(
x∗ | ℓ = H (x, x∗)

)
Pr

(
ℓ = H (x, x∗)

)
,

multiplying (1) with the above bounds on Pr (x∗ | ℓ = H (x, x∗))
and observing that the binomial coefficients cancel completes the
proof. □

The following lemma gives an upper bound on the proba-
bility of hitting any specific target search point x∗ during one
crossover phase of the (1 + (λ, λ)) GA. Note that, for the origi-
nal (1 + (λ, λ)) GA that does not consider mutants for selection,
Lemma 4.3 gives an upper bound for hitting x∗ in one generation.

Lemma 4.3. For every current search point x , every target search
point x∗ and every current parameter λ, the probability that the

(1 + (λ, λ))GA creates x∗ during the crossover phase of one generation
is at most

λ2
(
1
n

)H (x ,x ∗) (
1 − 1

n

)n−H (x ,x ∗)
.

Before diving into the proof, we give the main idea here. Recall
that in every generation, the (1 + (λ, λ)) GA performs λ mutations
with a radius of ℓ (drawn from a binomial distribution with param-
eters λ/n and n) and λ crossover operations with the best mutant.
All mutants are chosen uniformly at random from the Hamming
ball of radius ℓ around x . However, the following selection of the
best mutant does not preserve uniformity as some offspring on
said Hamming ball may have a higher fitness than others. Hence
the crossover operations will affect particular regions of the search
space more than others. While this is a helpful algorithmic concept
(in a sense that this makes the (1 + (λ, λ)) GA solve OneMax in
expected time O(n) [14]), it makes it hard to analyse what search
points will be generated during crossover as it depends on the
fitness function in hand.

As a solution, we borrow an idea similar to non-selective family

trees by Witt [36] and Lehre and Yao [30] that was also used in
previous analyses of the (1 + (λ, λ)) GA [12, Proof of Proposition 1].
We consider a variant of the (1 + (λ, λ))GA that we call non-selective
(1 + (λ, λ)) GA: instead of performing λ crossovers with the best
mutant, it performs λ crossovers for all of the λmutants. This results
in λ2 offspring generated from crossover, in addition to λ mutants.
Since the offspring created by the original (1 + (λ, λ))GA form a sub-
set of the offspring generated by the non-selective (1 + (λ, λ)) GA,
the probability of the original (1 + (λ, λ)) GA creating x∗ in one
crossover phase is bounded by the probability of the non-selective
(1 + (λ, λ)) GA creating x∗ during crossover. Owing to the absence
of selection, the output of the λ2 crossover operations is indepen-
dent of the fitness and we obtain a probability bound that only
depends on the Hamming distance H (x, x∗).

Proof of Lemma 4.3. We argue similarly as the proof of Propo-
sition 1 in [12]. Fix an offspring y created by the non-selective
(1 + (λ, λ)) GA. The process for creating y can be described as fol-
lows. The algorithm first picks a random value of ℓ according a
Binomial distribution with parameters n and λ/n, and then flips ℓ
bits chosen at random to create a mutant x ′. The creation of x ′ can
alternatively be regarded as a standard bit mutation with a mutation
rate of λ/n. To create y, each bit is independently taken from x ′

with probability 1/λ. Hence, each bit yi in y attains the value 1− xi
with probability 1/n, and it attains value xi with probability 1−1/n,
independently from all other bits. Hence the creation of y can be
described as a standard bit mutation with mutation rate 1/n.

The probability of y = x∗ is thus (1/n)H (x ,x ∗)(1− 1/n)n−H (x ,x ∗).
Note that different offspring are not independent as they use the
same random value of ℓ, and every batch of λ crossover operations
is derived from the same mutant. Taking a union bound over all λ2
offspring allows us to conclude, despite these dependencies, that
the probability of one offspring generating x∗ is at most

λ2
(
1
n

)H (x ,x ∗) (
1 − 1

n

)n−H (x ,x ∗)
. □

Now we are in a position to prove Theorem 4.1.

Proof of Theorem 4.1. By standard Chernoff bounds, the prob-
ability that the initial search point will have at most (1+ ε)n/2 ones
is 1 − 2−Ω(n). We assume this to happen and note that then the
algorithm will never accept a search point in the fitness valley of
n − k < i < n ones.

Let T plateau be the random number of generations until the
plateau of search points with n − k ones or the global optimum
is reached for the first time. We bound E

(
T plateau

)
from above as

follows3. This can be done using Theorem 3.1 as in Theorem 3.4 (c),
but with a non-canonical f -based partition where the best fitness
level includes the plateau and the global optimum. This yields
E

(
T plateau

)
= O(n).

By Lemmas 4.3 and 4.2, a generation with parameter λ reaches
the optimum with probability at most

λ(λ/n)k (1 − λ/n)n−k + λ2n−k = O(1/n2) := p

since the current search point has Hamming distance at least k
from the optimum and k ≥ 4. Then the probability that the global
optimum is found during the first T plateau steps is at most

∞∑
t=0

Pr
(
T plateau = t

)
· tp = p · E

(
T plateau

)
= O((logn)/n).

Now assume that the plateau has been reached and λ < λmax = n.
Since the optimum is the only search point with a strictly larger fit-
ness, λ will be increased in every generation unless the optimum is
found. By Lemma 3.2, there are at most 4 logF n generations before
λ has increased to λmax. By the same arguments as above, the prob-
ability that the optimum is found during this time is O((logn)/n2).

Once λ = λmax = n has been reached, mutation always creates
search points with k ones (i. e. mutation will never find the opti-
mum) and crossover boils down to a standard bit mutation with
mutation rate 1/n. Then the probability of one crossover creating
the optimum is (1/n)k (1 − 1/n)n−k and the expected number of

3The (1 + (λ, λ)) GA optimises OneMax in expected time O (n), but it is not immedi-
ately obvious how to translate the analysis to the OneMax-like parts of Jumpk . Note
that the (1 + (λ, λ)) GA may overshoot the plateau before the plateau is reached and
then the analysis on OneMax breaks down. We suspect this can be fixed with small
modifications, but for now we show a more obvious bound as this is sufficient for our
purposes.
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crossover operations for hitting the optimum is thus

nk ·

(
1 − 1

n

)−n+k
.

Since every batch of λ crossover operations is preceded by λ (use-
less) fitness evaluations during mutation, this adds a factor of 2
to the above lower bound. The proof is completed by noting that,
after adding up all failure probabilities, this case is reached with
probability at least 1 −O((logn)/n). □

5 CAPPING λ
A simple solution to prevent λ from growing to large values is to
constrain it. Buzdalov and Doerr [6] first suggested this strategy,
showing that it benefits the algorithm when optimising instances
of the maximum satisfiability problem with weak fitness-distance
correlation. Similarly in [4] the authors showed empirically that
capping λ at logn can improve the performance on linear functions
with random weights. In [15] it was used, arguing that mutation
probabilities larger than 1/2 are considered ill-natured. Here we
explore its benefits on Jumpk functions. In the following theorem,
we assume for simplicity to start on the plateau.

Theorem 5.1. After reaching the plateau, the expected number of

function evaluations for the (1 + (λ, λ)) GA with F > 1 constant and
λ capped at λmax < n is at most

O(n) + 4
(

n

λmax

)k (
1 − λmax

n

)−n+k
.

Proof. By Lemma 3.2, λ will reach λmax or find the global opti-
mum within O(n) evaluations. Then the probability of jumping to
the optimum in one generation is at least λmax/2 · (λmax/n)k (1 −
λmax/n)n−k by Lemma 4.2. Taking the reciprocal and multiplying
by 2λ yields the claim. □

Note that for λmax := k , Theorem 5.1 yields an upper bound of

O(n) + 4
(n
k

)k (
1 − k

n

)−n+k
.

For k ≥ 3, this matches the expected time for the (1 + 1) EA with
the optimal mutation rate of k/n up to constant factors. However,
we would need to know k in advance, which defies the goal of
parameter control.

If k is not known, an alternative strategy is to set λmax := n/2.
Then the (1 + (λ, λ))GA is able to simulate random searchwhenever
λmax is reached. This is a potential advantage on very hard and
deceptive functions where random search is a viable technique
(e. g. Jumpk with very large k such as k > n/logn). Note that the
(1 + (λ, λ)) GA still retains its exploitation capability and is still able
to optimise OneMax efficiently; the cap on λ only kicks in when
regular exploitation fails.

Theorem 5.2. Let f be any function with d non-optimal fitness

values and a set OPT of global optima such that either |OPT | ≥ 2
or OPT = {x∗} and its complement x∗ does not have the second-
best fitness value. Then for the self-adjusting (1 + (λ, λ)) GA with

λmax := n/2 and F > 1 constant we have

E

(
T eval

)
≤ O(dn) +

2n+4
|OPT|

E

(
T gen) ≤ O(d + logn) + 2n+4

n |OPT|

Proof. By Lemma 3.3, the algorithm spends O(dn) evaluations
and O(d + logn) generations in settings with λ < λmax. Hence we
can focus on improvement probabilities when λ = λmax.

If |OPT | ≥ 2, by Lemma 4.2, the probability of one generation
hitting any search point in OPT that is not the binary complement
of the current search point is at least λmax · 2−n−1 = n · 2−n−2. Since
there are at least |OPT | − 1 ≥ |OPT |/2 such search points and the
probabilities for hitting these are disjoint events, the probability
for finding the optimum is at least n · 2−n−3 · |OPT |. Taking the
reciprocal gives an upper bound on E (T gen), and multiplying by
2λmax = n yields a bound on E

(
T eval

)
.

If OPT = {x∗}, we use the same argument to show that within
2n+3

n |OPT | generations we either hit an optimum or a second-best
search point. From the latter, the probability of hitting the optimum
is bounded in the same way, since by assumption the current search
point is different from x∗. Then we proceed as before. □

Theorem 5.2 yields good results for λmax = n/2 if k is very large.

Corollary 5.3. For the self-adjusting (1 + (λ, λ)) GA with

λmax := n/2 on Jumpk we have E

(
T eval

)
≤ O(n2) + 2n+1 and

E (T gen) ≤ O(n) + 2n+1/n, for all k .

For k > n/logn, this is faster than the (1 + 1) EAwith the default
mutation rate 1/n as the latter needs expected time Θ(nk ).

6 RESETTING λ
Any generic choice of a maximum λmax bears the risk that the
(1 + (λ, λ)) GA might get stuck with sub-optimal parameters. A so-
lution to avoid this is to reset λ to 1 if λ = λmax and there is another
unsuccessful generation. This makes the algorithm cycle through
the parameter space in unsuccessful generations. A similar modifi-
cation was made in [21], where the authors restart the parameter
to λ = 1, but also restart the search from a random individual. We
do not restart the search because for functions like Jumpk , restarts
would run into the same set of local optima with overwhelming
probability. In [3, 4], the authors reset λ, but instead of resetting
to 1, they reset to the last successful parameter. We argue that, if
the next step of the optimisation needs a lower value of λ than this,
the algorithm will never use the correct parameter.

In the following, we will analyse the simple strategy of resetting
λ to 1 after an unsuccessful generation at λmax = n. This strategy
takes advantage of two different behaviours. When hill-climbing
the algorithm uses self-adjustment to regulate λ and maintain its
value in a good parameter range, because of this, its optimisation
time is not affected for problems like OneMax. However, when the
algorithm encounters a local optimum its behaviour is similar to
the dynamic (1 + 1) EA [25], cycling through different parameter
regions, like λ ∼ n/2, λ = n, helping the algorithm simulate random
search and the (1 + n) EA in one cycle. In addition, during every
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generation the crossover phase is still focusing on exploitation,
generating offspring concentrated around the parent.

We show that the fitness-level method can be applied here as well.
In contrast to Theorem 3.1, here improvement probabilities refer to
the transitions of the (1 + (λ, λ)) GA, and we consider improvement
probabilities across a whole cycle of parameter values.

Theorem 6.1. Given a canonical f -based partition A1, . . . ,Am+1,

and s
cycle
i a lower bound on the probability of finding an improvement

on level i during a cycle. Then for the self-adjusting (1 + (λ, λ)) GA
resetting λ to 1, using F > 1, we have

E

(
T eval

)
≤ O

(
n

F 1/4 − 1

) m∑
i=1

1
s
cycle
i

E

(
T gen) ≤ O(logF (n))

m∑
i=1

1
s
cycle
i

Proof. Since the f -based partition is canonical, the current fit-
ness level is left as soon as we encounter a successful generation.
Until this happens, the (1 + (λ, λ))GA cycles through all parameters
for λ. We use Lemma 3.2 to show that for every time the algorithm
cycles through all the parameters once, it will use O(logF (n)) gen-
erations and O

(
n

F 1/4−1

)
evaluations. The probability of leaving the

current fitness level during a cycle is at least scyclei by assumption.
Hence the expected number of cycles is at most 1/scyclei . Together,
this proves the claimed bounds. □

To showcase how this bound can be used we show an upper
bound for Jumpk .

Theorem 6.2. Let F > 1, k ≥ 2. The expected optimisation time

of the self-adjusting (1 + (λ, λ)) GA resetting λ to 1 on Jumpk is

min
{
O

(
nk

F 1/4 − 1

)
,O

((
F (k+1)/4

F 1/4 − 1

) (n
k

)k+1 ( n

n − k

)n−k )}
Proof. For the fitness levels A1 . . .Am−1 any individual can

leave the current fitness level by increasing or decreasing the num-
ber of 1-bits. For these fitness levels we bound scyclei by only con-
sidering generations with λ = n, therefore similar to Theorem 3.1
s
cycle
i ≥

sin
1+sin . Using the crude estimate si ≥ 1/(en), gives us an

expected time of 1/scyclei ≤ e + 1 to leave any of these fitness levels.
For the plateau in fitness levelAm , we use scyclem ≥ max{sk∗m , snm }

with sk
∗

m and snm being the probability of leaving Am with
λ ∈

[
k

F 1/4 ,k
]
and λ = n respectively and bound them separately.

snm ≥
smn

1 + smn
≥

1/(enk−1)
1 + 1/(enk−1)

≥
1

enk−1 + 1

For sk∗m we use Lemma 4.2 and the range λ ∈
[

k
F 1/4 ,k

]
as follows,

sk
∗

m ≥
λ

2 (λ/n)
k (1 − λ/n)n−k ≥ k

2F 1/4

(
k

F 1/4n

)k (
1 − k

n

)n−k
Applying Theorem 6.1 with s

cycle
m ≥ max{sk∗m , snm } and absorbing

the expected times for fitness levels i < m in the asymptotic nota-
tion proves the claimed bounds. □

Similar to Bassin and Buzdalov [4], we can slow down the growth
of λ. We accomplish this by cleverly choosing F in such a way
that the algorithm is able to use every λ ≤ n, ensuring that the
algorithm uses the best parameter value. Choosing F = (1+1/n)4 in
Theorem 6.2 implies that F (k+1)/4 = (1+ 1/n)k+1 ≤ (1+ 1/n)n+1 =
O(1), hence this factor can be dropped.

Corollary 6.3. Let F = (1+ 1/n)4, k ≥ 2. The expected optimisa-

tion time of the modified self-adjusting (1 + (λ, λ)) GA on the Jumpk
function is

min
{
O

(
nk+1

)
,O

(
n2

k

(n
k

)k ( n

n − k

)n−k )}
Comparing the bound of Corollary 6.3 against the expected op-

timisation time of the (1 + 1) EA with optimal mutation rate of

k/n, which isTopt = Θ

((
n
k

)k (
n

n−k

)n−k )
, [18], our bound is larger

than Topt by a factor of O
(
n2/k

)
. Our bound is only by a factor of

O(n2/k2) larger than the bound for the (1 + 1) EA with the heavy-
tailed (“fast”) mutation operators from [18] with the recommended
parameter β = 1.5.

7 CONCLUSIONS
We have provided a rigorous runtime analysis of the (1 + (λ, λ)) GA
for general function classes by presenting a fitness-level theorem
for the (1 + (λ, λ)) GA that is easy to use and enables a transfer of
runtime bounds for the (1 + 1) EA to the (1 + (λ, λ)) GA.

The parameter control mechanism in the original (1 + (λ, λ)) GA
tends to diverge λ to its maximum on multimodal problems. Then
the algorithm effectively simulates a (1+n) EA with the default mu-
tation rate of 1/n. For the multimodal benchmark problem class
Jumpk , we proved upper and lower runtime bounds that are tight
up to lower-order terms, showing that despite using crossover the
(1 + (λ, λ)) GA is not as efficient as other crossover-based algo-
rithms.

Imposing a maximum value λmax can improve performance,
however then the problem remains of how to set λmax if no problem-
specific knowledge is available. The generic choice λmax = n/2
makes the (1 + (λ, λ)) GA perform random search steps in case the
algorithm gets stuck. This guards against deceptive problems and
the algorithm still retains its original exploitation capabilities.

Finally, we investigated resetting λ to 1 after an unsuccessful
generation at the maximum value. This makes the (1 + (λ, λ)) GA
cycle through the parameter space, approaching optimal or near-
optimal parameter values in every cycle. We recommend to choose
F = (1 + 1/n)4 if a slow growth of λ is desired. For Jumpk , this
strategy gives the same expected runtime as that of the (1 + 1) EA
with the optimal mutation rate and fast mutation operators, up to
small polynomial factors.
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