
How Fitness Aggregation Methods Affect the Performance of
Competitive CoEAs on Bilinear Problems

Mario Alejandro Hevia Fajardo
School of Computer Science

University of Birmingham, Birmingham, UK

Per Kristian Lehre
School of Computer Science

University of Birmingham, Birmingham, UK

ABSTRACT

Competitive co-evolutionary algorithms (CoEAs) do not rely solely
on an external function to assign fitness values to sampled solutions.
Instead, they use the aggregation of outcomes from interactions
between competing solutions allowing to rank solutions and make
selection decisions. This makes CoEAs a useful tool for optimisation
problems that have intrinsically interactive domains.

Over the past decades, many ways to aggregate the outcomes
of interactions have been considered. At the moment, it is unclear
which of these is the best choice. Previous research is fragmented
and most of the fitness aggregation methods (fitness measures)
proposed have only been studied empirically.

We argue that a proper understanding of the dynamics of CoEAs
and their fitness measures can only be achieved through rigorous
analysis of their behaviour. In this work wemake a step towards this
goal by using runtime analysis to study two commonly used fitness
measures. We show a dichotomy in the behaviour of a (1, 𝜆) CoEA
when optimising a Bilinear problem. The algorithm finds a Nash
equilibrium efficiently if the worst interaction is used as a fitness
measure but it takes exponential time w. o. p. if the average of all
interactions is used instead.

CCS CONCEPTS

• Theory of computation→ Theory of randomized search

heuristics.

KEYWORDS

Runtime analysis, Competitive coevolution,Maximin Optimisation
ACM Reference Format:

Mario Alejandro Hevia Fajardo and Per Kristian Lehre. 2023. How Fitness
Aggregation Methods Affect the Performance of Competitive CoEAs on
Bilinear Problems. In Genetic and Evolutionary Computation Conference

(GECCO ’23), July 15–19, 2023, Lisbon, Portugal. ACM, New York, NY, USA,
9 pages. https://doi.org/10.1145/3583131.3590506

1 INTRODUCTION

In biology the term co-evolution is used to describe a process where
two or more species interact with each other reciprocally affecting
their success and survival, and consequently their evolution. Co-
evolution may happen in a mutualistic relationship, where both

GECCO ’23, July 15–19, 2023, Lisbon, Portugal

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0119-1/23/07.
https://doi.org/10.1145/3583131.3590506

species profit from the interaction or a competitive relationship
where the species are adversaries (e. g. predator/prey, parasite/host).

Co-evolutionary algorithms (CoEAs) try to mimic biological
co-evolution to solve optimisation problems [15]. As in their bio-
logical counterparts, they are divided in Cooperative CoEAs [12]
and Competitive CoEAs depending on the kind of interactions the
solutions take part in. We focus on Competitive CoEAs (we omit
the competitive label and simply call them CoEAs).

CoEAs have found great success in several applications, rang-
ing from test problems [1, 7] to real-world applications [3, 5, 17].
Despite their successes it has been well documented that CoEAs
present pathological algorithm dynamics during the optimisation
process [11, 15]. These pathological behaviours include, evolution-
ary forgetting: individuals with good characteristics are lost due to
lack of selection pressure from the current opponent population,
cyclic dynamics: traveling through some part of the search space
more than once with apparent improvement, disengagement: one
population overwhelmingly outperforms the other and the fitness
gradient disappears, among others. Although these pathologies are
well-known, due to the complex population dynamics of CoEAs,
they have eluded our understanding. Albeit some remedies have
been proposed [4, 5, 16, 17] we argue that without a rigorous un-
derstanding of what causes these harmful algorithm dynamics any
attempt to solve them has a high likelihood to result futile.

CoEAs use populations of solutions that in each generation inter-
act with each other and later assign a fitness to each solution based
on the results (payoffs) of their interactions. A common practice is
to aggregate the payoffs into a single numerical fitness value [15],
e. g. by averaging the performance outcomes, use the maximum,
minimum, median [18]1 or more complicated statistics such as fit-
ness sharing [16]. Unfortunately each fitness aggregation method
may come with (sometimes harmful) biases depending on the opti-
misation problem being solved. For example, in cooperative CoEAs
averaging interactions was observed to be harmful [19]. Bucci [2]
even attributed some pathological behaviours encountered in Co-
EAs to the use of any aggregation method. At the moment, it is
unclear when or if certain fitness aggregation methods (also called
fitness measures) help the optimisation process or when they result
in poor performance. Previous research is fragmented and all the
fitness measures proposed have only been studied empirically2.

Due to their complexity, there is little rigorous understanding of
the algorithm dynamics in (cooperative and competitive) CoEAs.
Jansen and Wiegand [6] rigorously analysed the runtime of a co-
operative CoEA on separable functions and showed that problem
separability does not guarantee a speedup over traditional EAs.
Lehre [8] analysed a population based CoEA on some instances of

1studied in Cooperative CoEAs
2Other than small tailored examples showing fitness measures can be misleading [2]

1593

This work is licensed under a Creative Commons Attribution‐NonCommercial‐
ShareAlike International 4.0 License.

https://doi.org/10.1145/3583131.3590506
https://doi.org/10.1145/3583131.3590506
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3583131.3590506&domain=pdf&date_stamp=2023-07-12

GECCO ’23, July 15–19, 2023, Lisbon, Portugal Mario Alejandro Hevia Fajardo and Per Kristian Lehre

Bilinear, showing that given the correct parameters the algorithm
finds an 𝜀-approximation efficiently, but an incorrect parameter
setting leads to exponential runtime. This work is a step forward
towards a rigorous understanding of how different fitness measures
can alleviate or aggravate the pathological behaviours of CoEAs.

We consider the (1, 𝜆) CoEA (Algorithm 1) on a class of Bilinear
problems with an infinite discrete search space (c. f. Section 2.2).
Bilinear is a challenging class of Maximin-problems because it
has intransitive properties and the continuous versions are known
to result in cyclic behaviour for some gradient-based algorithms [10,
13, 20]. Here, we ask whether the gradient-free (1, 𝜆) CoEA is able
to find a suitable solution despite the intransitivity of the problem
and what is the role of the fitness measures in its performance.

In Sections 3 and 4 we characterise how the fitness measures
assign fitness values based on the current population and how
the mutation operator creates solutions as a stepping stone of the
following theoretical analysis. Afterwards, in Section 5 we show
that the (1, 𝜆) CoEA using the average of interactions as fitness
measure not only results in a cyclic behaviour, but every cycle
the algorithm moves away from the optimum in expectation. This
result in an exponential time (with respect to the initial distance to
the optimum) to find an optimal solution w. o. p..

In sharp contrast, in Section 6 we show that the (1, 𝜆) CoEA (cre-
ating offspring in a deterministic way) using the worst interaction
as fitness measure is efficient, finding the optimum in polynomial
time. We note that the algorithm still presents a cycling behaviour
but the fitness measure helps alleviate the problem.

Finally, we present an experimental analysis where we test
whether our theoretical analysis translates to other search domains.
We observe that our theoretical analysis translates to other search
domains. That is, for all search domains studied, using the average
as a fitness measure results in exponential runtimes and using the
minimum as a fitness measure results in efficient runtimes.

2 PRELIMINARIES

For any natural number 𝑛 ∈ N we define [𝑛] := {1, 2, . . . , 𝑛}.
We study how different fitness aggregation methods (fitness

measures) affect the performance of CoEAs on Bilinear problems.
In particular, we study the expected number of fitness evaluations
(interactions) of the (1, 𝜆) CoEA (Algorithm 1) with two different
fitness measures on the class of Maximin-optimisation problems
called Bilinear. Given aMaximin-objective function 𝑔 : X ×Y →
R (where X,Y are any domain, strategy space or search space), a
Maximin-optimisation problem is the problem of finding a solution
𝑥 ∈ X that maximises 𝑔, assuming that the adversary 𝑦 ∈ Y
minimises 𝑔 for that solution.

The (1, 𝜆) CoEA as defined in Algorithm 1 optimises aMaximin-
optimisation problem. The (1, 𝜆) CoEA uses anymutation operators
mut𝑥 {·} : X → X and mut𝑦{·} : Y → Y. In concordance to
the algorithm, the class of Bilinear problems can be defined in
different search spaces too. We explore further this problem class
in Section 2.2. For our theoretical analysis we consider X = Y = Z

and the mutation operator used is described in detail in Section 4.
We choose the search spaces X = Y = Z for several reasons.

The domain is discrete, therefore, gradient-based algorithms do not
work denoting the importance of gradient-free algorithms such

as CoEAs. Despite being a discrete domain, Z is infinite, which
allows the creation of real unbiased mutation operators, in the sense
that movement towards one direction of the search space is not
limited by the search space itself making it less likely to happen.
This reason is particularly important in this study, because we
want to focus our analysis on how the fitness measures affect the
performance of CoEAs and this allows us to decouple the behaviour
of the selection mechanism (based on the fitness measures) from the
inherent tendency away from the boundaries of the search space
that a mutation operator in a finite search space have.

Due to space constraints, we removed some proofs from the pa-
per; the detailed proofs can be found in the supplementary material.

2.1 The (1, 𝜆) CoEA
The (1, 𝜆) CoEA uses a parent population of size one for each search
space X,Y. Each generation it creates 2𝜆 offspring by mutating
each parent 𝜆 times. Later it uses a fitness measure to assign a
fitness value to every offspring in one population depending on
their interactions with the other offspring population.

Algorithm 1: (1, 𝜆) CoEA
1 Require: Maximin-objective function 𝑔 : X ×Y → R.
2 Require: Population size 𝜆 ∈ N, fitness measures

𝑓𝑥 : X ×Y𝜆 , 𝑓𝑦 : Y × X𝜆 , mutation operators
mut𝑥 {·} : X → X, mut𝑦{·} : Y → Y and
initialisation methods init𝑥 {X}, init𝑦{Y}

3 Initialization: 𝑥1 ← init𝑥 {X} and 𝑦1 ← init𝑦{Y}.
4 for 𝑡 ∈ N do

5 Mutation: for 𝑖 ∈ {1, . . . , 𝜆} do
6 𝑃𝑡 (𝑖) ← mut{𝑥𝑡 } and 𝑄𝑡 (𝑖) ← mut{𝑦𝑡 };
7 Selection:

8 Choose 𝑥𝑡+1 ← argmax
𝑃𝑡 (𝑖)

{𝑓𝑥 (𝑃𝑡 (𝑖), 𝑄𝑡)};

9 Choose 𝑦𝑡+1 ← argmax
𝑄𝑡 (𝑖)

{𝑓𝑦 (𝑄𝑡 (𝑖), 𝑃𝑡)};

We consider two fitness measures 𝑓 :
• Individual vs all (average) 𝑓 avg: Each individual in a pop-
ulation is evaluated against every other individual in its
competing population, and the average of the evaluations is
used to determine the individuals’ fitness. That is,

𝑓
avg
X (𝑃𝑡 (𝑖), 𝑄𝑡) =

1
𝜆

𝜆∑︁
𝑗=1

𝑔(𝑃𝑡 (𝑖), 𝑄𝑡 (𝑗))

𝑓
avg
Y (𝑄𝑡 (𝑖), 𝑃𝑡) = −

1
𝜆

𝜆∑︁
𝑗=1

𝑔(𝑃𝑡 (𝑗), 𝑄𝑡 (𝑖)).

• Individual vs all (worst) 𝑓 wrs: Each individual in a population
is evaluated against every other individual in its competing
population, and the worst of the evaluations is used to de-
termine the individuals’ fitness. That is,

𝑓 wrsX (𝑃𝑡 (𝑖), 𝑄𝑡) = min
𝑗∈[𝜆]

{𝑔(𝑃𝑡 (𝑖), 𝑄𝑡 (𝑗))}

𝑓 wrsY (𝑄𝑡 (𝑖), 𝑃𝑡) = − max
𝑗∈[𝜆]

{𝑔(𝑃𝑡 (𝑗), 𝑄𝑡 (𝑖))}.

1594

How Fitness Aggregation Methods Affect the Performance of Competitive CoEAs on Bilinear Problems GECCO ’23, July 15–19, 2023, Lisbon, Portugal

2.2 Bilinear

The class of Bilinear problems is a simple and well-defined class
of Maximin-optimisation problems. The Bilinear problems have
been extensively used to understand the behaviour of Maximin-
optimisation algorithms (e.g. [10, 13, 20]) and it was recently used
by Lehre [8] to analyse a population-based CoEA.

The general form of Bilinear considers an 𝑛-dimensional (con-
tinuous or discrete) domain for the solutions 𝑥,𝑦. Since we consider
the 1-dimensional search spaces X = Y = Z, we give a simpler
form.

Bilinear𝛼,𝛽 (𝑥,𝑦) := 𝑥𝑦 − 𝛼𝑥 − 𝛽𝑦
The parameters 𝛼 and 𝛽 denote where theMaximin-solutions (also
called Nash equilibria or optimal solutions) are found. We denote
these solutions as OPT, that is, OPT := {(𝑥,𝑦) | 𝑥 = 𝛽 ∧ 𝑦 = 𝛼}.

During our analysis, we divide the search space into four quad-
rants. We say that a pair of search points (𝑥,𝑦) is in:
• the first quadrant if 𝑥 < 𝛽 ∧ 𝑦 ≥ 𝛼 ,
• the second quadrant if 𝑥 ≥ 𝛽 ∧ 𝑦 > 𝛼 ,
• the third quadrant if 𝑥 > 𝛽 ∧ 𝑦 ≤ 𝛼 , and
• the fourth quadrant if 𝑥 < 𝛽 ∧ 𝑦 < 𝛼 .

2.3 Notation

By G(𝑝) we denote the geometric distribution with parameter 𝑝 ∈
[0, 1]. The geometric distribution is often defined in two different
ways, we define it as the probability distribution of the number
of failures before the first success of Bernoulli trials with success
probability 𝑝 . Then, for 𝑋 ∼ G(𝑝) we have

Pr [𝑋 = 𝑘] = (1 − 𝑝)𝑘𝑝, E[𝑋] = 1 − 𝑝
𝑝

.

Definition 2.1. For populations 𝑃𝑡 ∈ X and 𝑄𝑡 ∈ Y we define:

𝑋𝑡 :=
∑︁
𝑥∈𝑃𝑡
(𝑥 − 𝛽) 𝑋 𝑡 :=

∑︁
𝑥∈𝑃𝑡
|𝑥 − 𝛽 |

𝑌𝑡 :=
∑︁
𝑦∈𝑄𝑡

(𝑦 − 𝛼) 𝑌 𝑡 :=
∑︁
𝑦∈𝑄𝑡

|𝑦 − 𝛼 |

𝑥min := argmin
𝑥∈𝑃𝑡

{𝑥} 𝑥max := argmax
𝑥∈𝑃𝑡

{𝑥}

𝑦min := argmin
𝑦∈𝑄𝑡

{𝑦} 𝑦max := argmax
𝑦∈𝑄𝑡

{𝑦}

𝑃−𝑡 := {𝑥 | 𝑥 ∈ 𝑃𝑡 ∧ 𝑥 ≤ 𝛽} 𝑃+𝑡 := {𝑥 | 𝑥 ∈ 𝑃𝑡 ∧ 𝑥 ≥ 𝛽}
𝑄−𝑡 := {𝑦 | 𝑦 ∈ 𝑄𝑡 ∧ 𝑦 ≤ 𝛼} 𝑄+𝑡 := {𝑦 | 𝑦 ∈ 𝑄𝑡 ∧ 𝑦 ≥ 𝛼}
𝑥+min := argmin

𝑥∈𝑃+𝑡
{𝑥} 𝑥−max := argmax

𝑥∈𝑃+𝑡
{𝑥}

𝑦+min := argmin
𝑦∈𝑄+𝑡

{𝑦} 𝑦−max := argmax
𝑦∈𝑄+𝑡

{𝑦}

𝑥∗min := argmin
𝑥∈𝑃𝑡

{|𝑥 − 𝛽 |} 𝑦∗min := argmin
𝑦∈𝑄𝑡

{|𝑦 − 𝛼 |}

3 ANALYSIS OF THE FITNESS MEASURES ON

BILINEAR

In this section we focus our attention on how the fitness measures
assign fitness to individual solutions. In particular, we explore what
solutions have the best fitness with respect to each fitness measure
on Bilinear. We start with the fitness measure 𝑓 avg.

Lemma 3.1 (Fitness Based on Averaging Interactions). Consider

two populations of solutions 𝑃𝑡 and 𝑄𝑡 and the fitness measure 𝑓 avg

on Bilinear. Then 𝑓 avg assigns the highest fitness to all solutions in
the sets 𝜉 ⊆ 𝑃𝑡 , Υ ⊆ 𝑄𝑡 defined as,

𝜉 =

{𝑥 | 𝑥 ∈ 𝑃𝑡 ∧ 𝑥 = 𝑥min} if 𝑌𝑡 < 0,
{𝑥 | 𝑥 ∈ 𝑃𝑡 ∧ 𝑥 = 𝑥max} if 𝑌𝑡 > 0,
𝑃𝑡 otherwise,

and

Υ =

{𝑦 | 𝑦 ∈ 𝑄𝑡 ∧ 𝑦 = 𝑦max} if 𝑋𝑡 < 0,
{𝑦 | 𝑦 ∈ 𝑄𝑡 ∧ 𝑦 = 𝑦min} if 𝑋𝑡 > 0,
𝑄𝑡 otherwise.

The most important thing to note from Lemma 3.1 is that the
decisions are made independent of the distance of the solutions
to their respective optimum. Additionally, the highest fitness is
assigned to solutions that at first glance seem to be detrimental to
be selected. In fact, our analyses focus on the decisions made by
the (1, 𝜆) CoEA based on these ill-informed fitness values.

Lemma 3.2 describes the fitness measure 𝑓 wrs. The behaviour
of this fitness measure is noticeably more complex than 𝑓 avg. Due
to the number of different cases we only display the cases for 𝑥 in
Lemma 3.2. The cases for 𝑦 are the same, exchanging 𝑥 , 𝑃𝑡 and 𝛼
for 𝑦, 𝑄𝑡 and 𝛽 and vice versa. The full lemma and its proof can be
found in the supplementary material.

Lemma 3.2 (Fitness Based on Worst Interactions). Consider two

populations of solutions 𝑃𝑡 and 𝑄𝑡 and the fitness measure 𝑓 wrs on
Bilinear. Then 𝑓 wrs assigns the highest fitness to all solutions in the

set 𝜉 ⊆ 𝑃𝑡 defined as,

𝜉 =

{𝑥 | 𝑥 ∈ 𝑃𝑡 ∧ 𝑥 = 𝑥−max} if |𝑌𝑡 | ≠ 𝑌 𝑡 ∧ |𝑋𝑡 | ≠ 𝑋 𝑡 ∧
(𝛽 − 𝑥−max) (𝛼 − 𝑦max) ≥
(𝛽 − 𝑥+min) (𝛼 − 𝑦min), (1)

{𝑥 | 𝑥 ∈ 𝑃𝑡 ∧ 𝑥 = 𝑥+min} if |𝑌𝑡 | ≠ 𝑌 𝑡 ∧ |𝑋𝑡 | ≠ 𝑋 𝑡 ∧
(𝛽 − 𝑥−max) (𝛼 − 𝑦max) ≤
(𝛽 − 𝑥+min) (𝛼 − 𝑦min), (2)

{𝑥 | 𝑥 ∈ 𝑃𝑡 ∧ 𝑥 = 𝑥∗min} if |𝑌𝑡 | ≠ 𝑌 𝑡 ∧ |𝑋𝑡 | = 𝑋 𝑡 , (3)
𝑃+𝑡 if |𝑌𝑡 | = 𝑌 𝑡 ∧ 𝑌𝑡 > 0 ∧

∃𝑦 ∈ 𝑄𝑡 , 𝑦 = 𝛼 ∧ 𝑃+𝑡 ≠ ∅, (4)
{𝑥 | 𝑥 ∈ 𝑃𝑡 ∧ 𝑥 = 𝑥∗min} if |𝑌𝑡 | = 𝑌 𝑡 ∧ 𝑌𝑡 > 0 ∧

∃𝑦 ∈ 𝑄𝑡 , 𝑦 = 𝛼 ∧ 𝑃+𝑡 = ∅, (5)
𝑃−𝑡 if |𝑌𝑡 | = 𝑌 𝑡 ∧ 𝑌𝑡 < 0 ∧

∃𝑦 ∈ 𝑄𝑡 , 𝑦 = 𝛼 ∧ 𝑃−𝑡 ≠ ∅, (6)
{𝑥 | 𝑥 ∈ 𝑃𝑡 ∧ 𝑥 = 𝑥∗min} if |𝑌𝑡 | = 𝑌 𝑡 ∧ 𝑌𝑡 < 0 ∧

∃𝑦 ∈ 𝑄𝑡 , 𝑦 = 𝛼 ∧ 𝑃−𝑡 = ∅, (7)
{𝑥 | 𝑥 ∈ 𝑃𝑡 ∧ 𝑥 = 𝑥max} if |𝑌𝑡 | = 𝑌 𝑡 ∧ 𝑌𝑡 > 0 ∧

∀𝑦 ∈ 𝑄𝑡 , 𝑦 ≠ 𝛼, (8)
{𝑥 | 𝑥 ∈ 𝑃𝑡 ∧ 𝑥 = 𝑥min} if |𝑌𝑡 | = 𝑌 𝑡 ∧ 𝑌𝑡 < 0 ∧

∀𝑦 ∈ 𝑄𝑡 , 𝑦 ≠ 𝛼, (9)
𝑃𝑡 if 𝑦 = 𝛼 ∀ 𝑦 ∈ 𝑄𝑡 , (10)

1595

GECCO ’23, July 15–19, 2023, Lisbon, Portugal Mario Alejandro Hevia Fajardo and Per Kristian Lehre

(a) (b)

Figure 1: Example populations 𝑃 ×𝑄 with the pair(s) of indi-

viduals with highest fitness value highlighted (red point) for

fitness measures 𝑓 avg (a) and 𝑓 wrs (b). 𝛼 𝛽 are denoted by the

red lines and the optimum is at the crossing of these lines.

Figure 1 shows some example populations and their highest
individuals for fitness measures 𝑓 avg (a) and 𝑓 wrs (b). The most
interesting example is when 𝑃 ×𝑄 comprises the four quadrants
and the optimal solution is included (top right in 1 (a) and 1 (b)). In
this case 𝑓 wrs correctly assigns the highest fitness to the optimum
but 𝑓 avg does not. When 𝑃 ×𝑄 comprises two quadrants (bottom
left and right in 1 (a) and 1 (b)) 𝑓 avg tend to assign the highest fitness
to individuals farther away from the optimum than the ones chosen
by 𝑓 wrs. Finally if 𝑃×𝑄 comprises one quadrant (top left in 1 (a) and
1 (b)) both fitness measures behave identically: the individual with
highest fitness is always the corner ahead in a clockwise direction.

4 ANALYSIS OF THE MUTATION OPERATOR

The (1, 𝜆) CoEA analysed here uses the following simple mutation
operator, which is called geometric mutation. For a parent 𝑥 it
creates the 𝑖-th offspring 𝑥 ′ by sampling 𝑋𝑖 ∼ G(𝑝) and adding or
subtracting that value to the parent. To simplify the analysis the
mutation operator creates exactly 𝜆/2 offspring as 𝑥 ′ = 𝑥 + 𝑋𝑖 and
the other 𝜆/2 offspring as 𝑥 ′ = 𝑥 − 𝑋𝑖 . This could be randomised,
maintaining the same expected number of offspring increasing
and decreasing value from the parent as follows: with probability
1/2 the operator adds 𝑋𝑖 and subtracts 𝑋𝑖 otherwise. Although we
believe our analysis holds for the randomised case, we decided not
to add it to avoid over-complicating the already complex analysis.

In Section 3 we have seen that the fitness measures assign fitness
to an individual based on the sum of distances to 𝛼 or 𝛽 . To this
effect the following lemma is useful to understand how much this
sum can change.

Lemma 4.1. Let ℎ ∈ N and 𝑌𝑖 be i.i.d. random variables sampled

from G(𝑝). Then,

Pr

𝜓∑︁
𝑖=1
(𝑌𝑖 + ℎ) −

2𝜓∑︁
𝑖=𝜓+1

(𝑌𝑖 − ℎ) ≤ 0
 = 𝑒−Ω (ℎ𝜓) .

Another important thing that we learnt in Section 3 is that the
offspring with highest fitness is often the farthest away from the
parent (with respect to one of the directions). Therefore, we need
to characterise the behaviour of the maximum value of several

geometric random variables. In the following lemma we study its
expected value.

Lemma 4.2. Let 0 < 𝑝 < 1, 𝜓 ∈ N, 𝑋𝑖 ∼ G(𝑝) and 𝑋 (𝜓) :=
max
𝑖∈[𝜓]

{𝑋𝑖 } then(
1 − 𝑒−

1
1−𝑝

)
log 1

1−𝑝
𝜓 ≤ E

[
𝑋 (𝜓)

]
≤ log 1

1−𝑝
𝜓 + 1 − 𝑝

𝑝
(11)

The expected value is not sufficient to fully understand the be-
haviour of the algorithm. In the following we show tail bounds on
the maximum value of several geometric random variables.

Lemma 4.3. Let 0 < 𝑝 < 1 and 𝑐 > 0. Let 𝛿 > 0,𝜓 ∈ N, 𝑋𝑖 ∼ G(𝑝)
and 𝑋 (𝜓) := max

𝑖∈[𝜓]
{𝑋𝑖 } then

Pr
[
𝑋 (𝜓) ≥ (1 + 𝛿) ln𝜓

𝑝

]
≤ min {𝜓−𝛿 , 1} (12)

Pr
[
𝑋 (𝜓) ≥ log 1

1−𝑝
𝑐𝜓

]
≤ 1/𝑐 (13)

Pr
[
𝑋 (𝜓) < (1 − 𝛿) 𝑝 ln𝜓1 − 𝑝

]
≤ exp

(
−𝜓𝛿

)
(14)

Algorithm 1 uses two competing populations and while one
population moves towards the optimum the other can move away
from it. In these cases we need to understand what is the expected
movement overall and what is the probability of this deviating from
its expectation. The following lemmas analyse these cases.

Lemma 4.4. Let 0 < 𝑝 < 1. Let 𝜓 ∈ N, 𝜏 ∈ N, 𝑋𝑖 , 𝑌𝑖 be inde-

pendent and identically distributed (i.i.d.) random variables sam-

pled from G(𝑝), 𝑋 (𝜓)
𝑗

:= max
𝑖∈[𝜓]

{𝑋𝑖 } and 𝑌
(𝜓)
𝑗

:= max
𝑖∈[𝜓]

{𝑌𝑖 }. Let

𝑍 :=
∑𝜏

𝑗=1

(
𝑋
(𝜓)
𝑗
− 𝑌 (𝜓)

𝑗

)
. Then E[𝑍] = 0.

Lemma 4.5. Let 0 < 𝜀 < 𝑝 < 1. Let |𝜂 | < 𝑝 − 𝜀, 𝜓 ∈ N, 𝜏 ∈
N, 𝑋𝑖 ∼ G(𝑝) and 𝑋 (𝜓) := max

𝑖∈[𝜓]
{𝑋𝑖 }. Then E

[
𝑒𝜂𝑋

(𝜓)
]
≤ 𝜓

𝜀 and

E
[
𝑒−𝜂𝑋

(𝜓)
]
≤ 𝜓

(
1 + 1

𝜀

)
.

Lemma 4.6. Let 0 < 𝑝 < 1. Let 𝜓6 ≥
(
1 + 2

𝑝

)2
with 𝜓 ∈ N.

Let 𝑟 ′ := 8𝑟
√
2 ln𝜓
𝑝 , 𝑟 ≥ 2, 𝑗 ∈ N0, 𝜏 ∈ N, 𝑋𝑖 , 𝑌𝑖 ∼ G(𝑝) be i.i.d.

random variables, 𝑋 (𝜓) := max
𝑖∈[𝜓]

{𝑋𝑖 } and 𝑌 (𝜓) := max
𝑖∈[𝜓]

{𝑌𝑖 }. Let

𝑍 :=
∑𝜏
𝑖=1 (𝑋

(𝜓) − 𝑌 (𝜓)). Then,

Pr
[
|𝑍 | ≥ 𝑗𝑟 ′

]
≤ 𝑒− 𝑗𝑟 .

5 AVERAGING INTERACTIONS IS

INEFFICIENT

In this section we study the fitness measure 𝑓 avg. We show that
the (1, 𝜆) CoEA using 𝑓 avg takes exponential time to reach the
optimum.

Theorem 5.1. Consider Algorithm 1 with fitness measure 𝑓 avg

and geometric mutation operator on Bilinear. Define 𝑇 = min{𝑡 |
OPT∩(𝑃𝑡 ×𝑄𝑡) ≠ ∅}. Let 𝑑 := |𝑥1 − 𝛽 | + |𝑦1 − 𝛼 |. If the following
conditions hold:

1596

How Fitness Aggregation Methods Affect the Performance of Competitive CoEAs on Bilinear Problems GECCO ’23, July 15–19, 2023, Lisbon, Portugal

(a) (b)

Figure 2: Expected behaviour of (1, 𝜆) CoEA with fitness mea-

sure 𝑓 avg (a) and fitness measure 𝑓 wrs (b) on Bilinear.

• 𝜆 ≤ 𝑑𝑎−2 for some constant 𝑎 > 2.
•

(
1 − 𝑒−

1
1−𝑝

)
log 1

1−𝑝
𝜆/2 ≥ 2

Then, 𝑇 ≥ 𝑒Ω (𝑑) with probability 1 − 𝑒−Ω (𝑑) .

The main idea of the proof of Theorem 5.1 is that the algorithm
moves through each quadrant in a clockwise manner. While inside
a quadrant the algorithm maintains its distance to the optimum in
expectation and each time it moves from one quadrant to the other
the last generation continues in the wrong direction moving away
from the optimum. Figure 2 (a) visualises this behaviour.

To facilitate the analysis we divide a run of the algorithm into
different intervals that denote when the algorithm moves from one
quadrant to the other (not necessarily in a clockwise manner).

Definition 5.2 (Blocks). Let 𝜏𝑖 = min{𝑡 > 𝜏𝑘−1 | (𝑥𝑡 − 𝛽) (𝑥𝜏𝑘−1 −
𝛽) < 0 ∨ (𝑦𝑡 − 𝛼) (𝑦𝜏𝑘−1 − 𝛼) < 0} and 𝜏0 := 0. We divide a run into
generation intervals (𝜏𝑘 , 𝜏𝑘+1] that we call blocks.

The first step is to show that the algorithm does not spend too
much time in one block. This is shown in the following lemma.

Lemma 5.3. Let 𝑐 > 0, 𝑎 > 2 be constants such that for some 𝑑 > 0,
𝑑𝑎 −𝑐𝑑 = Ω(𝑑𝑎−1). Consider the (1, 𝜆) CoEA with 𝜆 ≤ 𝑑𝑎−2 starting
a block with a Manhattan distance 𝑐𝑑 > 0. The probability that the
algorithm spends more than 𝑑𝑎 generations during a block is 𝑒−Ω (𝑑) .

Proof. By the definition of a block once the algorithm moves to
another quadrant a block finishes. Here we omit all possibilities of
moving to another quadrant except by moving to the quadrant that
is clockwise to the current one. Since the initial Manhattan distance
is 𝑐𝑑 the algorithm needs to move in one direction (clockwise) by
at least 𝑐𝑑 .

To explain the computations we assume that we are in the second
quadrant (𝑥𝑡 − 𝛽 > 0 and 𝑦𝑡 − 𝛼 > 0) and the algorithm moves
downwards to the next quadrant in expectation, that is 𝑦 is decreas-
ing until it reaches𝑦 < 𝛼 . Thanks to the symmetry of the behaviour
of the algorithm in the quadrants, the computations hold for all
quadrants.

To fit the perspective of the additive drift tail bounds [9, Theorem
2.4.7] we use a potential function ℎ(𝑦𝑡) := min{0, 𝑦𝑡 − 𝛼}. Let Δ :=
ℎ(𝑦𝑡) − ℎ(𝑦𝑡+1) and note that Δ ≥ 0 as long as 𝑋𝑡 > 0 because the
algorithm creates at least 𝜆/2 offspring with the same value of 𝑦𝑡

or less and by Lemma 3.1 the algorithm selects the offspring with
the smallest value. If 𝑋𝑡 ≤ 0, the opposite is true, and then Δ ≤ 0.

Recall that 𝑋𝑡 :=
∑︁
𝑥∈𝑃𝑡
(𝑥 − 𝛽). Let ℎ := 𝑥𝑡 − 𝛽 > 0. Then 𝑋𝑡 is

equivalent to
𝜆/2∑︁
𝑖=1
(𝑋𝑖 + ℎ) −

𝜆/2∑︁
𝑖=1
(𝑋𝑖 − ℎ),

where 𝑋𝑖 are i.i.d. random variables sampled from G(𝑝). Then, by
Lemma 4.1, Pr [𝑋𝑡 ≤ 0 | 𝑥𝑡 − 𝛽 > 0] = 𝑒−Ω (𝜆) .

By Lemma 4.2 using𝜓 = 𝜆/2 we obtain

E[Δ] ≥ Pr [𝑋𝑡 ≤ 0 | 𝑥𝑡 − 𝛽 > 0] E[Δ | 𝑋𝑡 ≤ 0]
+ Pr [𝑋𝑡 > 0 | 𝑥𝑡 − 𝛽 > 0] E[Δ | 𝑋𝑡 > 0]

≤ 𝑒−Ω (𝜆)
(
log 1

1−𝑝
(𝜆/2) + 1 − 𝑝

𝑝

)
+
(
1 − 𝑒−Ω (𝜆)

) (
1 − 𝑒−

1
1−𝑝

)
log 1

1−𝑝
𝜆/2

= Ω(log 𝜆)

This shows condition (2.24) from [9, Theorem 2.4.7].
Independent on if the algorithm moves upward or downward

the Pr [|Δ| > 𝑗] ≤ Pr [𝑍 ≥ 𝑗] with 𝑌𝑖 ∼ G(𝑝) and 𝑍 := max
𝑖∈[𝜆/2]

{𝑌𝑖 }.

Therefore, by Lemma 4.3 (13) with 𝑐 = 2𝑒 𝑗/𝜆 we obtain,

Pr [|Δ| > 𝑗] ≤ 𝜆

2𝑒 𝑗
,

and the last condition (2.21) from [9, Theorem 2.4.7] is met with
𝜂 = 1 − 𝑒 and 𝑟 = 𝜆/2.

Let, 𝜏 be the time the algorithm spends in a block, then by the
additive drift tail bounds.

Pr
[
𝜏 ≥ 𝑑𝑎

]
≤ exp

((
− (1 − 𝑒) (𝑑

𝑎 − 𝑐𝑑))
8

) (
(1 − 𝑒)2 (𝑑𝑎 − 𝑐𝑑)

16𝜆𝑐𝑑

))
= exp

(
−Ω(𝑑𝑎−1)

)
= 𝑒−Ω (𝑑) . □

Now, we show that the algorithm does not jump far away from
its current parents during one generation.

Lemma 5.4. Let 𝑑 > 0. The probability that a generation from

Algorithm 1 using the geometric mutation operator starts with parents

𝑥,𝑦 and creates a pair of points 𝑥 ′, 𝑦′ with a Manhattan distance from

their parents |𝑥 − 𝑥 ′ | + |𝑦 − 𝑦′ | ≥ 𝑑 is at most 𝜆3𝑒−𝑑𝑝 . If 𝜆3 = 𝑒𝑜 (𝑑)

this is 𝑒−Ω (𝑑) .

Proof. By Lemma 4.3 with 𝜓 = 𝜆, the probability of creating
offspring 𝑥 ′ and 𝑦′ with distance |𝑥 − 𝑥 ′ | and |𝑦 − 𝑦′ | from 𝑥 and 𝑦
respectively is

min
{
𝜆1−|𝑥−𝑥

′ | 𝑝

ln𝜆 , 1
}
·min

{
𝜆1−|𝑦−𝑦

′ | 𝑝

ln𝜆 , 1
}

(15)

If none of the two expressions areminimised by 1, then this becomes

𝜆2−(|𝑥−𝑥
′ |+|𝑦−𝑦′ |) 𝑝

ln𝜆 < 𝜆2−𝑐𝑑
𝑝

ln𝜆 = 𝜆2𝑒−𝑑𝑝 .

On the other hand if one of the expressions is minimised by 1, then
Equation (15) implies that either |𝑥 − 𝑥 ′ | ≤ ln 𝜆/𝑝 and |𝑦 − 𝑦′ | ≥

1597

GECCO ’23, July 15–19, 2023, Lisbon, Portugal Mario Alejandro Hevia Fajardo and Per Kristian Lehre

𝑑 − ln 𝜆/𝑝 or |𝑦 − 𝑦′ | ≤ ln 𝜆/𝑝 and |𝑥 − 𝑥 ′ | ≥ 𝑑 − ln 𝜆/𝑝 . Therefore,
Equation (15) yields

𝜆
2−(𝑑− ln𝜆

𝑝
) 𝑝

ln𝜆 = 𝜆3−𝑐𝑑
𝑝

ln𝜆 = 𝜆3𝑒−𝑑𝑝 .

Both cases are at most 𝜆3𝑒−𝑑𝑝 . If 𝜆3 = 𝑒𝑜 (𝑑) then there is a constant
𝑐 > 0 for which 𝜆3𝑒−𝑑𝑝 ≤ 𝑒−𝑑𝑐 . □

The main part of the analysis is to show that there is a large
region (of sizeΘ(𝑑)) in the search space where the algorithmmoves
away from the optimum in expectation after each block.

Lemma 5.5. Let 𝑐 > 0 be a constant. Let
(
1 − 𝑒−

1
1−𝑝

)
log 1

1−𝑝
𝜆/2 ≥

2. Let𝑀𝑘 :=
��𝑥𝜏𝑘 − 𝛽 �� + ��𝑦𝜏𝑘 − 𝛼 �� > 𝑐𝑑 be the Manhattan distance at

the beginning of block 𝑘 . Then, there exists a constant 𝛿 > 0 such that

E[𝑀𝑘+1 −𝑀𝑘 | 𝑀𝑘 > 𝑐𝑑] ≥ 𝛿 .

Proof. By Lemma 5.3 there are at most𝑑𝑎 generations (for some
constant 𝑎 > 2) in one block with probability 1 − 𝑒−Ω (𝑑) . We call
𝐸1 to the event that a block takes longer than 𝑑𝑎 generations. If
event 𝐸1 happens we pessimistically assume that the optimum is
found during the block, that is𝑀𝑘+1 = 0.

By the dynamics of the algorithm on the Bilinear problem every
block is spent in a quadrant of the search space located clockwise
from the previous block, unless there was a generation within the
block with at least one pair of search points from 𝑃𝑡 ×𝑄𝑡 in all of
the four quadrants of the search space. We call 𝐸2 the event that
during the current block there is a generation 𝑡 where the algorithm
creates at least one pair of search points from 𝑃𝑡 ×𝑄𝑡 in all of the
four quadrants and pessimistically assume that if this happens the
optimum is found during the block. Therefore 𝐸2 guarantees that
the next block is located clockwise from the previous block.

If event 𝐸1 does not happen, by Lemma 5.4 the probability that
event 𝐸2 happens during one generation is 𝑒−Ω (𝑑) . By a union
bound over 𝑑𝑎 generations, the probability of 𝐸2 is still 𝑒−Ω (𝑑) .
Then

Pr [𝐸1 ∨ 𝐸2] E[𝑀𝑘+1 −𝑀𝑘 | 𝑀𝑘 > 𝑐𝑑 ∧ (𝐸1 ∨ 𝐸2)] ≥ −𝑐𝑑𝑒−Ω (𝑑)
(16)

From now on we consider only cases where events 𝐸1 and 𝐸2 does
not happen. For simplicity, in the following we also assume that
the block 𝑘 is in the second quadrant of the search space and note
that thanks to the symmetry of the behaviour of the algorithm the
computation holds for all quadrants.

Recall the definitions 𝑋𝑡 :=
∑︁
𝑥∈𝑃𝑡
(𝑥 − 𝛽) and 𝑌𝑡 :=

∑︁
𝑦∈𝑄𝑡

(𝑦 − 𝛼).

We assume that if 𝑥𝑡 − 𝛽 > 0 then 𝑋𝑡 > 0 because of the following:
if this is not the case during one generation, (with block 𝑘 in the
second quadrant) then by Lemma 3.1 the algorithm would choose
either the pair of offspring farthest away from the optimum (if
𝑋𝑡 < 0) or a pair of offspring that is at least as far as the one that
would be chosen otherwise (if 𝑋𝑡 = 0). Given this assumption, by
Lemma 4.4 all generations but the last one have an expected change
in distance to the optimum of 0.

There are two different cases for the expected change in distance
depending on where the last generation 𝑡 = 𝜏𝑘+1 − 1 of a block
starts. Specifically, the two cases are 𝑦𝑡 − 𝛼 = 0 and 𝑦𝑡 − 𝛼 > 0. We
denote these cases as 𝐸3 and 𝐸4.

If the last generation starts with 𝑦𝑡 − 𝛼 = 0 (event 𝐸3) then there
is a probability 𝜉 that𝑌𝑡 = 0 and 𝑥𝑡+1 is chosen uniformly at random
from 𝑃𝑡 . Since the offspring in 𝑃𝑡 have the same probability of hav-
ing a value 𝑥𝑡 +𝑖 and 𝑥𝑡−𝑖 for all 𝑖 ∈ N then in expectation 𝑥𝑡 = 𝑥𝑡+1
and the pair 𝑥𝑡+1, 𝑦𝑡+1 are farther from the optimum by 𝑦𝑡 − 𝑦𝑡+1
which is at least

(
1 − 𝑒−

1
1−𝑝

)
log 1

1−𝑝
𝜆/2 in expectation (Lemma 4.2).

There is also a probability (1 − 𝜉)/2 of 𝑌𝑡 > 0 and (1 − 𝜉)/2 of
𝑌𝑡 < 0. In the former case by Lemma 3.1 the algorithm selects
𝑥𝑡+1 = argmax

𝑥∈𝑃𝑡
{𝑥}, that is, the offspring farthest away from the op-

timum. Pessimistically assuming that 𝑦𝑡 = 𝑦𝑡+1, the pair 𝑥𝑡+1, 𝑦𝑡+1
are farther from the optimum by at least

(
1 − 𝑒−

1
1−𝑝

)
log 1

1−𝑝
𝜆/2

(Lemma 4.2). Finally, if 𝑌𝑡 < 0 in expectation the distance to the
optimum is at least the same, therefore,

E[𝑀𝑘+1 −𝑀𝑘 | 𝑀𝑘 > 𝑐𝑑 ∧ 𝐸3]

≥
(
1 − 𝜉
2 + 𝜉

) (
1 − 𝑒−

1
1−𝑝

)
log 1

1−𝑝
𝜆/2

≥ 1
2

(
1 − 𝑒−

1
1−𝑝

)
log 1

1−𝑝
𝜆/2 ≥ 1

For event 𝐸4, we denote ℎ := 𝑦𝑡 − 𝛼 > 0. As event 𝐸3 there are
three outcomes depending on the value of 𝑌𝑡 . Therefore, we use
Lemma 4.1 to compute Pr [𝑌𝑡 ≤ 0 | 𝑦𝑡 − 𝛼 > 0]. Recall that 𝑌𝑡 :=∑︁
𝑦∈𝑄𝑡

(𝑦 − 𝛼). Then 𝑌𝑡 is equivalent to

𝜆/2∑︁
𝑖=1
(𝑌𝑖 + ℎ) −

𝜆∑︁
𝑖=𝜆/2+1

(𝑌𝑖 − ℎ),

where 𝑌𝑖 are i.i.d. random variables sampled from G(𝑝). Then, by
Lemma 4.1

Pr [𝑌𝑡 ≤ 0 | 𝑦𝑡 − 𝛼 > 0] = 𝑒−Ω (𝜆) .

If 𝑌𝑡 < 0, by Lemmas 3.1 and 4.2 𝑥𝑡+1 moves towards the optimum

by at most
(
log 1

1−𝑝
𝜆/2 − 1−𝑝

𝑝

)
in expectation. If 𝑌𝑡 = 0, 𝑥𝑡 = 𝑥𝑡+1

in expectation. For the 𝑦 direction, we are interested in the change
in distance away from the optimum solution given that 𝑦𝑡 > 𝛼

and 𝑦𝑡+1 < 𝛼 , that is, (𝛼 − 𝑦𝑡+1) − (𝑦𝑡 − 𝛼). The event 𝑌𝑡 ≤ 0 is
positively correlated with 𝛼 − 𝑦𝑡+1 because it implies that there
are more offspring with values less than 𝛼 than the expectation
and they are farther from the optimum. For the same reason it is
also negatively correlated with 𝑦𝑡 − 𝛼 . Therefore we can bound
the change in distance to the optimum in the 𝑦 direction by the
unconditional expected step size given by Lemma 4.2. Adding both
directions results in a decrease in distance to the optimum by at

most 2
(
log 1

1−𝑝
𝜆/2 − 1−𝑝

𝑝

)
in expectation for both 𝑌𝑡 < 0 and 𝑌𝑡 =

0.
Finally, for 𝑌𝑡 > 0 with 𝑦𝑡 − 𝛼 > 0 we denote Δ𝑦 := 𝑦𝑡+1 − 𝑦𝑡

and Δ𝑥 := 𝑥𝑡+1 − 𝑥𝑡 . We aim to show that E
[
Δ𝑦

]
= E[Δ𝑥] − 𝑜 (1)

which in conjunction with the fact that 𝑦𝑡+1 > 𝛼 imply that in the
worst case (best case for the algorithm) the Manhattan distance to
the optimum increases by at least 2 − 𝑜 (1).

Given the condition𝑌𝑡 > 0we have E
[
Δ𝑦

]
= E

[
𝑌 (𝜆/2) | 𝑌𝑡 > 0

]
,

where 𝑌 (𝜆/2) is the sum of 𝜆/2 geometrically distributed random

1598

How Fitness Aggregation Methods Affect the Performance of Competitive CoEAs on Bilinear Problems GECCO ’23, July 15–19, 2023, Lisbon, Portugal

variables. By the law of total expectation,

E
[
𝑌 (𝜆/2) | 𝑌𝑡 > 0

]
=

E
[
𝑌 (𝜆/2)

]
− E

[
𝑌 (𝜆/2) | 𝑌𝑡 ≤ 0

]
· Pr [𝑌𝑡 ≤ 0]

Pr [𝑌𝑡 > 0]
We note that the condition 𝑌𝑡 ≤ 0 is equivalent to

𝜆/2∑︁
𝑖=1
(𝑌𝑖 + ℎ) −

𝜆∑︁
𝑖=𝜆/2+1

(𝑌𝑖 − ℎ) ≤ 0.

If all 𝑌𝑖 with 𝑖 ∈ (𝜆/2, 𝜆] are greater or equal to 2ℎ + max
𝑖∈[1,𝜆/2]

{𝑌𝑖 }

then𝑌𝑡 ≤ 0 is guaranteed. Thanks to the forgetfulness of the geomet-
ric distribution, for𝑌𝑖 ∼ G(𝑝), E[𝑌𝑖 | 𝑌𝑖 ≥ 𝑗] = 𝑗 +E[𝑌𝑖]. Therefore,

E
[
𝑌 (𝜆/2) | 𝑌𝑡 ≤ 0

]
≤ 2ℎ + 2E

[
𝑌 (𝜆/2)

]
≤ 4ℎE

[
𝑌 (𝜆/2)

]
,

where the last inequality holds because E
[
𝑌 (𝜆/2)

]
> 1 by the

assumptions and Lemma 4.2 and ℎ ≥ 1. As mentioned before, by
Lemma 4.1 Pr [𝑌𝑡 ≤ 0] = 𝑒−Ω (ℎ𝜆) and

E
[
𝑌 (𝜆/2) | 𝑌𝑡 ≤ 0

]
· Pr [𝑌𝑡 ≤ 0] ≤ 4ℎE

[
𝑌 (𝜆/2)

]
𝑒−Ω (ℎ𝜆) = 𝑜 (1),

Hence,

E
[
𝑌 (𝜆/2) | 𝑌𝑡 > 0

]
≥

E
[
𝑌 (𝜆/2)

]
1 − 𝑒−Ω (𝜆)

− 𝑜 (1) = E
[
𝑌 (𝜆/2)

]
− 𝑜 (1),

and the Manhattan distance to the optimum increases by at least
2 − 𝑜 (1). Joining the three cases for event 𝐸4, we obtain
E[𝑀𝑘+1 −𝑀𝑘 | 𝑀𝑘 > 𝑐𝑑 ∧ 𝐸4]

≥ −2
(
log 1

1−𝑝
𝜆/2 − 1 − 𝑝

𝑝

)
𝑒−Ω (𝜆) + (2 − 𝑜 (1)) (1 − 𝑒−Ω (𝜆)) ≥ 𝛿 ′ .

Where 0 < 𝛿 ′ < 2 − 𝑜 (1) is a constant independent of 𝑑 and 𝜆.
Joining all events together yields,

E[𝑀𝑘+1 −𝑀𝑘 | 𝑀𝑘 > 𝑐𝑑] =
Pr [𝐸1 ∨ 𝐸2] E[𝑀𝑘+1 −𝑀𝑘 | 𝑀𝑘 > 𝑐𝑑 ∧ (𝐸1 ∨ 𝐸2)]+
Pr [𝐸3] E[𝑀𝑘+1 −𝑀𝑘 | 𝑀𝑘 > 𝑐𝑑 ∧ 𝐸3]+
Pr [𝐸4] E[𝑀𝑘+1 −𝑀𝑘 | 𝑀𝑘 > 𝑐𝑑 ∧ 𝐸4]

≥ −𝑐𝑑𝑒−Ω (𝑑) + Pr [𝐸3] + 𝛿 ′Pr [𝐸4]

≥ −𝑐𝑑𝑒−Ω (𝑑) + 𝛿 ′Pr [𝐸3 ∨ 𝐸4] /2

≥ −𝑐𝑑𝑒−Ω (𝑑) + 𝛿 ′ (1 − 𝑒Ω (𝑑))/2 ≥ 𝛿,

where 𝛿 > 0 is a constant independent of 𝑑 and 𝜆. □

With the previous helper lemmas we are now in position to
prove the main theorem of this section.

Proof of Theorem 5.1. We aim to use the negative drift the-
orem with scaling [14, Theorem 2]. By Lemma 5.5 every block
starting with a Manhattan distance 𝑐𝑑 from the optimum has at
least constant negative drift 𝛿 > 0. This meets condition (1) of [14,
Theorem 2].

For Condition (2), we use Lemma 4.6 with 𝑟 ′ = 16
√
2 ln𝜆/2
𝑝 . Then,

for all blocks excluding the last generation (from 𝑡 = 𝜏𝑘 + 1 to
𝑡 = 𝜏𝑘+1 − 1), the following holds,

Pr
[��𝑀𝜏𝑘+1 −𝑀𝜏𝑘+1−1

�� ≥ 𝑗𝑟 ′
]
≤ 𝑒−2𝑗

Then, we need to only consider the last generation. In the worst
case both 𝑥𝜏𝑘+1 and 𝑦𝜏𝑘+1 move towards/away from the optimum.
By Lemma 5.4 the probability of creating an offspring at a distance
at least ℓ is at most 𝜆3𝑒−ℓ𝑝 = 𝑒3 ln𝜆−ℓ𝑝 . Using ℓ = 4𝑗 ln𝜆

𝑝 yields,

𝑒3 ln𝜆−ℓ𝑝 = 𝑒3 ln𝜆−4𝑗 ln𝜆 ≤ 𝑒− 𝑗 ln𝜆 .

Then choosing 𝑟 = 𝑟 ′ + 4 ln𝜆
𝑝 ,

Pr
[��𝑀𝜏𝑘+1 −𝑀𝜏𝑘+1

�� ≥ 𝑗𝑟
]
≤ 𝑒−2𝑗 + 𝑒− 𝑗 ln𝜆 ≤ 𝑒− 𝑗 .

We note that 𝑟2 = 𝑂 (log2 𝜆). Then Condition (3) of [14, Theo-
rem 2] holds thanks to the assumption 𝜆 = 𝑒𝑜 (𝑑) . □

6 FITNESS BASED ON WORST INTERACTIONS

IS EFFICIENT

Owing to the large number of different behaviours the fitness mea-
sure 𝑓 wrs can take, its analysis is much more involved. In Section 4
we have seen that the geometric mutation operator generates off-
spring around the parents in a square pattern (as the example pop-
ulations shown in Figure 1 (b)), and deviations from the expected
behaviour have exponential decay. Although we believe the main
result of this section (Theorem 6.1) holds for the geometric mu-
tation operator, we simplify the computations by assuming that
the offspring in each generation are always created around the
parents in an exact square pattern. For the readers’ convenience we
present the pseudo-code of this instantiation of the (1, 𝜆) CoEA in
Algorithm 2.

Algorithm 2: Deterministic (1, 𝜆) CoEA
1 Require: Max-min-objective function 𝑔 : X ×Y → R.
2 Require: Population size 𝜆 = 2𝑟 + 1 with radius 𝑟 ∈ N, and

fitness measures 𝑓𝑥 : X ×Y𝜆 , 𝑓𝑦 : Y × X𝜆

3 Initialization: Sample 𝑥1 = 0 and 𝑦1 = 0.
4 for 𝑡 ∈ N do

5 Mutation: for 𝑖 ∈ {0, . . . , 𝜆 − 1} do
6 𝑃𝑡 (𝑖) ← 𝑥𝑡 − 𝑟 + 𝑖;
7 𝑄𝑡 (𝑖) ← 𝑦𝑡 − 𝑟 + 𝑖;
8 Selection:

9 Choose 𝑥𝑡+1 ← argmax
𝑃𝑡 (𝑖)

{𝑓𝑥 (𝑃𝑡 (𝑖), 𝑄𝑡)};

10 Choose 𝑦𝑡+1 ← argmin
𝑄𝑡 (𝑖)

{𝑓𝑦 (𝑄𝑡 (𝑖), 𝑃𝑡)};

Theorem 6.1. Consider Algorithm 2 with fitness measure 𝑓 wrs and
radius 𝑟 ≥ 1 on Bilinear. Define 𝑇 = min{𝑡 | OPT∩(𝑃𝑡 ×𝑄𝑡) ≠ ∅}.
Let 𝑀1 := |𝑥1 − 𝛽 | + |𝑦1 − 𝛼 | > 𝑟 be the initial Manhattan distance

to the optimum. Then, E[𝑇] ≤ 𝑀2
1
𝑟 − 𝑟 . If𝑀𝑡 ≤ 𝑟 then 𝑇 = 1.

7 EXPERIMENTS

Although our theoretical results have given us important insights
of how the fitness measures affect the performance of CoEAs, they
are limited to only one search space (X = Y = Z). It is unclear
if our results translate to other search spaces. In this section, we
conduct an experimental analysis that aims to complement our

1599

GECCO ’23, July 15–19, 2023, Lisbon, Portugal Mario Alejandro Hevia Fajardo and Per Kristian Lehre

25.0 50.0 75.0 100.0 125.0 150.0 175.0 200.0 225.0 250.0
Distance

10−1

100

No
.o

fe
va

lu
at

io
ns

/d
2

Domain
Continuous
Integer lattice
Pseudoboolean α= 0.5, β= 0.5
Pseudoboolean α= 0.65, β= 0.85

Figure 3: Runtime of the (1, 𝜆) CoEA (Algorithm 1) with fit-

ness measure 𝑓 wrs on Bilinear.

theoretical results with precise runtime results for the (1, 𝜆) CoEA
(Algorithm 1) with different fitness measures on Bilinear problems
defined over three different search spaces (X = Y = Z,X = Y = R

and X = Y = {0, 1}𝑛). For the search space X = Y = {0, 1}𝑛 we
use the definition of Bilinear used by [8] with 𝑛 = 500 in all
experiments and two parameter values (𝛼 = 𝛽 = 0.5 and 𝛼 =

0.8, 𝛽 = 0.75). We note that the mutation operator in the case
𝛼 = 𝛽 = 0.5 has an inherent genetic drift towards the optimum
(𝑛/2). Therefore the case 𝛼 = 𝛽 = 0.5 should be easy to optimise
even for a (1, 𝜆) CoEA that selects a random offspring every time.

For the three different search spaces the (1, 𝜆) CoEA uses the
following mutation operators:
• X = Y = Z - Geometric mutation (random direction and
𝑝 = 1/2): For a parent 𝑥 , the offspring 𝑥 ′ = 𝑥 + G(1/2) with
probability 1/2 and 𝑥 ′ = 𝑥 − G(1/2).
• X = Y = R - Gaussian mutation (step size of 1): For a
parent 𝑥 , the offspring 𝑥 ′ = 𝑥 + N(0, 1).
• X = Y = {0, 1}𝑛 - Standard bit mutation (𝑝 = 1/𝑛): An
offspring is created by copying the parent and flipping each
bit with probability 1/𝑛.

All experiments comprise of 100 runs for each algorithm-problem
pair, recording the number of evaluations (interactions) to reach
the optimum. Each run is limited to 109 evaluations, if the run does
not find the optimum within this time limit, 109 is reported as the
runtime. For the search space X = Y = R we assume the optimum
is found if both 𝑥 = [𝛽 − 0.1, 𝛽 + 0.1] and 𝑦 = [𝛼 − 0.1, 𝛼 + 0.1].

We first explore the fitness measure 𝑓 wrs. In Figure 3 we show
in the 𝑥-axis the initial Manhattan distance to the optimum3 and in
the 𝑦-axis the runtime divided by 𝑑2 and log-scaled. Given that the
number of evaluations are normalised by 𝑑2 we can appreciate that
for the distances studied and all search spaces, the runtime seems
to grow slower than 𝑑2. This indicates that our bounds might not
be tight or that they are tight but only for large initial distances 𝑑 .
Nonetheless, these experiments are evidence that our theoretical
results on 𝑓 wrs do translate to other search spaces.

Similarly, the experimental results for the fitness measure 𝑓 avg
(Figure 4) show that our theoretical results translate to other search
spaces. For these experiments it is particularly interesting to see

3For the search space X = Y = {0, 1}𝑛 the Manhattan distance is defined as the sum
of the Hamming distances of both 𝑥 and 𝑦 to an optimal solution.

2.0 3.0 4.0 5.0 6.0 7.0 8.0
Distance

104

105

106

107

108

109

No
. o

f e
va

lu
at

io
ns

Continuous
Integer lattice

Pseudoboolean α= 0.5, β= 0.5
Pseudoboolean α= 0.65, β= 0.85

Figure 4: Runtime of the (1, 𝜆) CoEA (Algorithm 1) with fit-

ness measure 𝑓 avg on Bilinear.

that the runtime explodes even for small initial distances to the
optimum.

8 CONCLUSIONS

We have shown how the selection of fitness measures dramatically
affects the performance of the (1, 𝜆) CoEA on Bilinear. Both fitness
measures studied here present a cyclic behaviour on this problem.
Using the average payoff of interactions worsens this behaviour
resulting in exponential time to find an optimal solution. On the
other hand using the worst payoff alleviates the problem resulting
in an efficient optimisation.

An important insight from our theoretical analysis is that both
fitness measures tend to maintain the distance to the optimum in
most generations and what differentiates them is the behaviour
during the generation where the current solutions are part of more
than one quadrant of the search space. While using the worst inter-
action as fitness decreases the distance to the optimum averaging
interactions increases it. We hope that this insight inspires the
design of better CoEAs that exploit this behaviour.

It remains an open problem, whether the results shown here
apply to other intransitive problems and how other fitness mea-
sures affect the performance of CoEAs on intransitive problems.
Furthermore, an interesting venue for future work is to theoreti-
cally analyse other classes of problems to examine whether CoEAs
are affected by the fitness measure on these problems to the same
extent as seen in this work.

ACKNOWLEDGMENTS

This research was supported by a Turing AI Fellowship (EPSRC
grant ref EP/V025562/1). The computations described in this paper
were performed using the University of Birmingham’s BlueBEAR
HPC service. See http://www.birmingham.ac.uk/bear for more de-
tails.

REFERENCES

[1] Jürgen Branke and Johanna Rosenbusch. New approaches to coevolutionary
worst-case optimization. In Parallel Problem Solving from Nature – PPSN X, pages
144–153, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[2] Anthony Bucci. Emergent Geometric Organization and Informative Dimensions in

Coevolutionary Algorithms. Brandeis University, Massachusetts, USA, 2007.

1600

How Fitness Aggregation Methods Affect the Performance of Competitive CoEAs on Bilinear Problems GECCO ’23, July 15–19, 2023, Lisbon, Portugal

[3] Diana Flores, Erik Hemberg, Jamal Toutouh, and Una-May O’Reily. Coevolu-
tionary generative adversarial networks for medical image augumentation at
scale. In Proceedings of the Genetic and Evolutionary Computation Conference,
GECCO ’22, page 367–376, New York, NY, USA, 2022. Association for Computing
Machinery. ISBN 9781450392372.

[4] Erik Hemberg, Jamal Toutouh, Abdullah Al-Dujaili, Tom Schmiedlechner, and
Una-May O’Reilly. Spatial coevolution for generative adversarial network train-
ing. ACM Trans. Evol. Learn. Optim., 1(2), jul 2021. ISSN 2688-299X.

[5] W.Daniel Hillis. Co-evolving parasites improve simulated evolution as an op-
timization procedure. Physica D: Nonlinear Phenomena, 42(1-3):228–234, June
1990.

[6] Thomas Jansen and R. Paul Wiegand. The Cooperative Coevolutionary (1+1) EA.
Evolutionary Computation, 12(4):405–434, 12 2004.

[7] Mikkel T Jensen. A New Look at Solving Minimax Problems with Coevolution.
Metaheuristics: Computer Decision-Making, 86:369, 2003.

[8] Per Kristian Lehre. Runtime analysis of competitive co-evolutionary algorithms
for maximin optimisation of a bilinear function. In Proceedings of the Genetic and

Evolutionary Computation Conference, GECCO ’22, page 1408–1416, New York,
NY, USA, 2022. Association for Computing Machinery.

[9] Johannes Lengler. Drift Analysis, pages 89–131. Springer, 2020.
[10] Tengyuan Liang and James Stokes. Interaction Matters: A Note on Non-

asymptotic Local Convergence of Generative Adversarial Networks. ArXiv

e-prints, 2019.
[11] Sean Luke and R Paul Wiegand. When coevolutionary algorithms exhibit evolu-

tionary dynamics. In Genetic and Evolutionary Computation Conference Workshop

Program, pages 236–241, 2002.

[12] Xiaoliang Ma, Xiaodong Li, Qingfu Zhang, Ke Tang, Zhengping Liang, Weixin
Xie, and Zexuan Zhu. A survey on cooperative co-evolutionary algorithms. IEEE
Transactions on Evolutionary Computation, 23(3):421–441, 2019. doi: 10.1109/
TEVC.2018.2868770.

[13] Aryan Mokhtari, Asuman Ozdaglar, and Sarath Pattathil. A Unified Analysis
of Extra-gradient and Optimistic Gradient Methods for Saddle Point Problems:
Proximal Point Approach. ArXiv e-prints, 2019.

[14] Pietro S. Oliveto and Carsten Witt. Improved time complexity analysis of the
simple genetic algorithm. Theoretical Computer Science, 605:21 – 41, 2015. ISSN
0304-3975.

[15] Elena Popovici, Anthony Bucci, R. Paul Wiegand, and Edwin D. De Jong. Co-
evolutionary Principles. In Grzegorz Rozenberg, Thomas Bäck, and Joost N.
Kok, editors, Handbook of Natural Computing, pages 987–1033. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2012.

[16] Christopher D. Rosin and Richard K. Belew. New Methods for Competitive
Coevolution. Evolutionary Computation, 5(1):1–29, 03 1997. ISSN 1063-6560.

[17] Karl Sims. Evolving 3d morphology and behavior by competition. Artificial Life,
1(4):353–372, 1994.

[18] R. Paul Wiegand, William C. Liles, and Kenneth A. De Jong. An empirical
analysis of collaboration methods in cooperative coevolutionary algorithms. In
Proceedings of the 3rd Annual Conference on Genetic and Evolutionary Computation,
GECCO’01, page 1235–1242, San Francisco, CA, USA, 2001. Morgan Kaufmann
Publishers Inc. ISBN 1558607749.

[19] Rudolf Paul Wiegand. An analysis of cooperative coevolutionary algorithms.
George Mason University, Virginia, USA, 2004.

[20] Guojun Zhang and Yaoliang Yu. Convergence of Gradient Methods on Bilinear
Zero-Sum Games. ArXiv e-prints, 2020.

1601

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 The (1, L) CoEA
	2.2 Bilinear
	2.3 Notation

	3 Analysis of the Fitness Measures on Bilinear
	4 Analysis of the Mutation Operator
	5 Averaging Interactions is Inefficient
	6 Fitness Based on Worst Interactions is Efficient
	7 Experiments
	8 Conclusions
	Acknowledgments
	References

