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ABSTRACT

Success-based parameter control mechanisms for Evolutionary Al-
gorithms (EA) change the parameters every generation based on
the success of the previous generation and the current parameter
value. In the last years there have been proposed several mech-
anisms of success-based parameter control in the literature. The
purpose of this paper is to evaluate and compare their sequential
optimisation time and parallelisation on different types of problems.
The geometric mean of the sequential and parallel optimisation
times is used as a new metric to evaluate the parallelisation of the
EAs capturing the trade off between both optimisation times. We
perform an empirical study comprising of 9 different algorithms on
four benchmark functions. From the 9 algorithms eight algorithms
were taken from the literature and one is a modification proposed
here.

We show that the modified algorithms has a 20% faster sequen-
tial optimisation time than the fastest known GA on OneMax.
Additionally we show the benefits of success-based parameter con-
trol mechanisms for NP-hard problems and using the proposed
metric we also show that success-based offspring population size
mechanisms are outperformed by static choices in parallel EAs.
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1 INTRODUCTION

Evolutionary algorithms (EAs) are population-based optimisation
algorithms, most of them have a set of parameters that need to be
tuned or have parameters set to default values by design. Theoretical
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research has demonstrated that the correct (or incorrect) selection of
these parameters impact on the performance of the algorithms [9],
therefore parameter tuning and parameter control are key themes
in the study of EAs.

Parameter tuning aims to select static parameter settings that
are globally optimal for a given algorithm on a given problem.
Thanks to theoretical studies in parameter tuning we have a better
understanding on the correct selection of parameters for EAs. One
of the first results of this research area proved that the standard
mutation rate of p = 1/n minimises the expectation time on linear
functions [27]. Even though parameter tuning has been essential
on our understanding of EAs, these parameter settings generally
are suboptimal in some states of the optimisation process in order
to find a good compromise for the whole process [9].

In contrast, parameter control addresses this problem by using
dynamic parameter settings that search for the best parameters on
the fly. There are several types of parameter control, in particular
fitness-dependant parameter control has proven that dynamic pa-
rameter choices can decrease the expected optimisation time of an
algorithm in particular problems [1, 2]. These choices are highly
problem-tailored, therefore a good understanding of the problem is
needed to create a suitable dependence of the parameters. This is
often not feasible, for this reason some researchers have focused on
success-based parameter control mechanisms, which do not depend
on the problem at hand to improve the performance.

Examples of EAs with success-based parameter control are the
following. The (1 + λ) EA with Two-rate Standard Bit Mutation
[11] which uses a self-adjusting mechanism for the mutation rate.
This EA was proven to achieve asymptotically the same expected
runtime on OneMax as the highly tailored self-adaptive param-
eter control in [1]. Another group of algorithms are multiplica-
tive success-based rules for the offspring population size λ, i.e. the
value is multiplied or divided depending on the success of the
previous generation. These group of algorithms have shown to
adjust λ well [18, 21]. The last group of algorithms includes the
(1 + (λ, λ)) GA [10] and the self-adjusting (1 + (λ, λ)) GA. The
self-adjusting (1 + (λ, λ)) GA was proven to optimise OneMax in
linear time [8] being the fastest known GA on that problem. We
also propose a newmodification of the self-adjusting (1+ (λ, λ)) GA
explained in Section 4. A broader review on (1+ λ) EA and success-
based mechanisms is done in Section 3.

In this paper we aim to complement the theoretical studies on
EAs with success-based parameter control mechanisms with an
empirical study that evaluates both non-parallel and parallel com-
puting. With this aim we also want to contribute in reducing the
gap between mathematical and empirical research on EAs as done
by other studies such as Doerr et al. [14] where the authors study
some of the same algorithms studied here. In order to achieve our
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aim we use the sequential optimisation time and the geometric
mean of the sequential and parallel optimisation times, which is a
new performance measure for parallel computing. A discussion on
the benefits of this metric is made in Section 5.

We focus on evaluating EAs with success-based parameter con-
trol mechanisms that were proposed and study in theoretical papers
on four different functions; OneMax, LeadingOnes, SufSamp and
Makespan Scheduling which are explained in Section 2.

We found that for complex problems such as Makespan Schedul-
ing, the (1+λ) EAwith Two-rate Standard BitMutation outperforms
all other algorithms that use the static mutation probability p = 1/n.
We confirmed that all the (1+λ) EAs with Success-Based Offspring
Population Size have similar sequential optimisation time than
the best static values. Also the modified Self-Adjusting (1 + (λ, λ))
GA improves by 20% the sequential optimisation time of the orig-
inal Self-Adjusting (1 + (λ, λ)) GA on OneMax for problem sizes
n = {100, 500, 5000}.

The paper is structured as follows. The four benchmark functions
are defined in Section 2. Section 3 gives a background on parame-
ter control and introduces the EAs with success-based parameter
control mechanisms that are evaluated here. The proposed modifi-
cation to the Self-Adjusting (1 + (λ, λ)) GA is shown in Section 4.
Section 5 explains the motivation behind the use of the geometric
mean and its benefits. Section 6 shows the experiment results and
discussion. Finally we finish with the conclusions in Section 7.

2 ARTIFICIAL LANDSCAPES

The artificial landscapes used in this study were selected for dif-
ferent reasons. OneMax and LeadingOnes are used as a baseline
because they are popular benchmark functions for theoretical re-
sults based on runtime analyses [2, 5, 10, 11, 13, 14, 16–18, 20, 26].
Makespan Scheduling is included to consider an NP-hard problem
from combinatorial optimisation. Finally SufSamp [18] was cho-
sen because it is designed to trap small offspring population sizes
making it interesting for self-adjusting population sizes.

2.1 OneMax

TheOneMax functionwas designed as a simple benchmark function.
OneMax : {0, 1} → N is defined by

OneMax(x ) :=
n∑
i=1

xi for all n ∈ N and all x ∈ {0, 1}n

Since it is one of the simplest functions, it has been studied
profoundly and in particular is known as the easiest problem [5, 12]
for the (1+ 1) EA, which is a special case of (1 + λ) EA where λ = 1.
The optimum of the function is a bit-string with only ones.

2.2 LeadingOnes

The function LeadingOnes : {0, 1} → N is defined by

LeadingOnes(x ) :=
n∑
i=1

i∏
j=1

x j for all n ∈ N and all x ∈ {0, 1}n

The LeadingOnes function has the same optimum as OneMax
but the fitness function is different. To calculate the fitness of an
individual, the number of consecutive ones are counted starting
from the left and stop whenever a zero is found.

2.3 SufSamp

This function was created by Jansen et al. [18] as a problem where
an EA with λ > 1 would have a faster expected optimisation time
than using λ = 1. Its fitness landscape has a single narrow steep
path to the global optimum and several branches guiding to a local
optimumwith amore gradual uphill path.With these characteristics
an EA would need to have a sufficient large offspring population
size in order to increase the probability to find the right path at
every branch point Bn or jump out of a local optimum. In the
function there are about

√
n number of Bn that can lead to a local

optimum.
For n ∈ N, k :=

⌊√
n
⌋
and |x | = OneMax(x ). The function

f : {0, 1}n → N for all x ∈ {0, 1}n is:

f (x ) :=




(i + 3)n + |x | if (x = 0n−i1i with 0 ≤ i ≤ n) or
(x = y0n−i−k1i with
i ∈ {k, 2k, . . . , (k − 2)k }, y ∈ {0, 1}k )

0 otherwise.
With the previous definition of f a start point of 0n is needed,

in order to avoid this, f is extended into SufSamp as follows:
For n ∈ N,m′ := ⌊n/2⌋,m′′ := ⌈n/2⌉. Then SufSamp: {0, 1}n →

N is defined as:

SufSamp(x ) :=



n − OneMax(x ′′) if x ′ , 0m
′

∧ x ′′ , 0m
′′

2n − OneMax(x ′) if x ′ , 0m
′

∧ x ′′ = 0m
′′

f (x ′′) if x ′ = 0m
′

for all x = x1x2 · · · xn ∈ {0, 1}n with x ′ := x1x2 · · · xm′ ∈ {0, 1}m
′

and x ′′ := xm′+1xm′+2 · · · xn ∈ {0, 1}m
′′

2.4 Makespan Scheduling

The makespan scheduling problem is a combinatorial optimisation
problem, where the scheduling of n jobs inm machines takes place.
Within this problem there are different sets of constraints that can
be applied, in this work the description of Makespan Scheduling
on 2 machines is used as given by Neumann and Witt [22].

Makespan scheduling on 2 machines. There are n jobs with pos-
itive processing times p1,p2, . . . ,pn and need to be scheduled on
two identical machines in order to minimise the makespan. To en-
code the machines a bit-string x ∈ {0, 1}n is used where the job i is
scheduled on machine 1 if the xi = 0 and on machine 2 otherwise.
The fitness function is described by:

fp1, ...,pn (x ) := max



n∑
i=1

pixi ,
n∑
i=1

pi (1 − xi )



(1)

For this problem a common practice is to initialise the process-
ing times randomly. Because of this, the solution of each problem
instance is not known beforehand.

An approximation of the solution on the makespan schedul-
ing problem is used as stopping criterion, in order to avoid the
complexity of calculating an exact solution. The algorithm used as
approximation is called Longest Processing Time (LPT), it consists
in sorting the jobs by processing time decreasingly, and using the
sorted jobs to put every job in the currently emptier machine [22].
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3 BACKGROUND

In this section, we introduce the success-based EAs that are evalu-
ated. We start with the basic (1 + λ) EA and later we explain the
success-based parameter control mechanisms implemented in each
algorithm.

3.1 The (1 + λ) EA
The (1 + λ) EA is one of the simplest EAs. It uses a parent which is
mutated into λ offspring with a mutation operator that flips each
bit independently with mutation probability p, afterwards an elitist
selection step decides the parent of the next generation. All of the
EAs shown here are based on this algorithm.

In the literature there have been several runtime analysis of the
(1+ λ) EA on OneMax [5, 13, 16–18] and LeadingOnes [2, 14, 18].
From these studies we have a better understanding of how to select
the best parameter settings for each problem.

3.1.1 Mutation rate in (1+ λ) EA. The mutation probability p is
described as the independent probability of flipping each bit, and
its formula is p = c/n with mutation rate c and number of bits n.
Traditionally the mutation probability of p = 1/n has been used in
(1 + 1) EA as a rule of thumb, but this was not formally proven to
be the best choice at first. Later a tight (up to lower order terms)
bound of (1 ± o(1)) e

c

c n lnn for all linear functions was proven by
Witt [27]; given that this bound has the factor ec

c that depends on
the mutation rate, it can be derived that the mutation probability
p = c/n with c = 1 is optimal to minimise the specified bound.

This optimal probability was later generalised for the (1 + λ) EA
on the OneMax function by Gießen and Witt [16] were they found
that the expected parallel optimisation time (i.e. number of genera-
tions) is equal to

(1 ± o(1))
(
ec

c
·
n lnn
λ
+
1
2
·
n ln ln λ
ln λ

)
From this we can infer that if the value of λ is smaller than a certain
threshold, the first part of the function is predominant and the opti-
mal mutation rate is still c = 1, and after that threshold the value of c
does not change the expected runtime, up to lower order terms; the
threshold value or cut-off point of λ is ln(n) ln(ln(n))/ ln(ln(ln(n))).

Even though these results help us choosing parameters, they
do not imply that for every instance, problem and algorithm the
best choice of mutation rate is c = 1, for example small values of
n in OneMax result in a small increase on the optimal mutation
rate [4] and also the optimal value for the mutation probability
on LeadingOnes is p ≈ 1.59/n [2] with λ = 1 and can vary for
different values of λ [14].

Furthermore it has been demonstrated that the implementation
of fitness-dependent adaptive schemes for themutation rate is faster
compared to the mutation rate c = 1 for the (1 + λ) EA on OneMax
[1] and LeadingOnes [2].

Later a success-based parameter control mechanism for the mu-
tation rate in the (1 + λ) EA was proven to achieve asymptotically
the same expected number of fitness evaluations as the fitness-
dependent mutation rate for the OneMax problem [11].

3.1.2 Offspring population in (1 + λ) EA. There have been a
wide range of studies on the behaviour of the offspring population
size, especially in the (1 + λ) EA. In Jansen et al. [18] the authors

made a broad study of the impact of λ; they found that for simple
landscapes setting λ in the range of 1 ≤ λ ≤ logn grant asymp-
totically equivalent sequential optimisation times, and specifically
for OneMax and LeadingOnes there is no benefit in increasing λ
beyond λ = 1. In contrast with these landscapes the authors also
showed that for more complex problems there is a benefit on us-
ing large values for λ; the tailored function SufSamp (explained in
Section 2.3) was presented with such characteristics.

In the study above the focus was made on sequential processing
time but for parallel processing time it has been shown that there
is a linear improvement in parallel optimisation time on OneMax
[16] and LeadingOnes [18] by increasing λ. This is true until a
cut-off value of λ = o(ln(n) ln(ln(n))/ ln(ln(ln(n)))) and λ = O (n)
respectively.

Given the knowledge that an improvement can be made by par-
allelisation several models to exploit this have been studied [19, 20].
Lässig and Sudholt [21] also described a parallel model that can
be used with success-based offspring population, they used two
parameter control mechanisms that are explained in Section 3.3.

3.1.3 Crossover and Genetic Algorithms (GA). One of the main
operators of EAs is the crossover (also called recombination). This
operator is inspired by sexual reproduction in nature, and essen-
tially it combines two parents into one offspring; there are several
ways to implement crossover, and empirical research has been
made showing their performance on different problems [23]. From
a range of seven crossover operators uniform crossover performs
better in almost all problems tested.

Crossover is not used in the basic (1 + λ) EA, but it has been
believed to improve the optimisation time compared against EAs
with onlymutation. This was empirically proved by Picek andGolub
[23], but only on artificially constructed functions, later Sudholt
[26] proved that crossover is at least twice as fast for building-block
functions like OneMax, as long as diversity is enforced. Following
this Corus and Oliveto [6] proved that GAs with µ ≥ 3 are at least
25% faster than all unbiased standard bit mutation-based EAs with
static mutation rate for OneMax even if no diversity is enforced.
3.2 The (1 + λ) EA with Two-rate Standard Bit

Mutation

This algorithm was proposed in Doerr et al. [11]. The general idea
of the mutation scheme is to adjust the mutation strength according
to its success in the population, in order to do this it creates λ/2
offspring with a mutation probability p = c/(2n) and the other
λ/2 offspring with p = 2c/n. The mutation rate c is initialised as
cinit ≥ F (F being the mutation update factor) and adjusted at
every iteration with 50% probability to cnew = c/F or cnew = Fc
depending on the mutation probability of the fittest offspring, and
50% probability to a random value in {c/F , Fc}. If at any time the
mutation rate goes outside of the boundaries [F , n/(2F )], the muta-
tion rate is replaced by the boundary exceeded. The pseudocode
can be found in the original paper [11].
3.3 The (1 + λ) EA with Success-Based

Offspring Population Size

All of the success-based mechanisms described in this section are
multiplicative updates, where the offspring population size is mul-
tiplied if there is no improvement in fitness and divided otherwise.
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A simple success-based offspring population size was proposed by
Lässig and Sudholt [21] where the authors double the offspring
population size in an unsuccessful generation (i.e. no fitness im-
provement) to help finding improvements. In order to reduce the
offspring population size on a successful generation and maintain a
"healthy" size they used two approaches. The first approach is to set
the offspring population size to 1, this might help if it becomes easier
to find an improvement after a success, but if the landscape does not
change, it also makes sense to have a similar offspring population
size, therefore in the second approach they only halve the offspring
population size after a successful generation. From their behaviour
they have been called (1+ {2λ, 1}) EA and (1+ {2λ, λ/2}) EA [9, 14].
We generalise the algorithms with an offspring population update
factorG and end up with the (1+{Gλ, 1}) EA and (1+{Gλ, λ/G}) EA
where G can be any value larger or equal to 1.

Another update rule was proposed by Jansen et al. [18] where λ
is multiplied by 2 in an unsuccessful generation and divided by s
otherwise, with s being the number of successful offspring. The rea-
soning given in their work was to set λ to roughly the reciprocal of
the success probability, minimising the total expected optimisation
time. Again we generalise this idea as the (1 + {Gλ, λ/s}) EA.

The last update rule is based on the idea of using the 1/5th rule to
update the offspring population size [8]. In this case if a generation
is not successful the offspring is multiplied by G1/4 and divided by
G otherwise. Following the same name convention this EA is called
(1 + {G1/4λ, λ/G}) EA.

3.4 The (1 + (λ, λ)) GA
The (1+(λ, λ)) GAwas first proposed byDoerr et al. [10]. It works by
first mutating the parent λ times, then applying a uniform crossover
λ times between the parent and the fittest mutated offspring, in the
end it performs an elitist selection. This GA has a variant of the
standard mutation operator, that is equivalent to it. The mutation
operator is called mutℓ (.). First it chooses ℓ different positions in [n]
uniformly at random and then it flips the values in those bits in the
original bit-string to create the mutated bit-string. The variable ℓ is
sampled from a binomial distribution B (n,p), where p denotes the
mutation probability. In this algorithm ℓ is only sampled once per
generation, making all mutation offspring have the same distance
to the parent.

A benefit of the operator, as shown in [24] is that you can also
use the conditional distribution B>0 (n,p) which resamples ℓ when
ℓ = 0 to avoid not flipping bits, or simply use 1 when ℓ is sampled
as 0.

3.5 The Self-Adjusting (1 + (λ, λ)) GA
In the same paper where the (1 + (λ, λ)) GA was proposed [10],
the authors used a success-based parameter control based on the
1/5th rule. The algorithm updates λ every generation with a multi-
plicative update where λ is multiplied by a factorG1/4 if there is no
improvement in fitness and divided by G otherwise. The mutation
rate and the crossover probability are parametrised by p = λ/n and
c = 1/λ. Since all parameters are a function of λ, the only param-
eter to adjust by the user is the update factor G. This algorithm
was proven to optimise OneMax in linear time[8], showing for the
first time that self-adjusting parameter choices can be beneficial in
discrete optimization problems.

4 THE SELF-ADJUSTING (1 + (λ, λ)) GAWITH

OPTIMAL STOPPING THEORY

In this section we explain the modifications made to the original
(1 + (λ, λ)) GA and the motivation behind them.

We take inspiration from the field of optimal stopping theory.
There is a wide variety of problems that are considered part of
the optimal stopping theory [15], we consider the results found in
the variation called secretary problem or marriage problem. The
simplest form of this problem is described by Ferguson [15], where
there is a secretary position and there are n number of applicants.
The applicants are interviewed sequentially in random order, you
can rank all applicants without ties and you must decide to reject
or accept each applicant based on the relative ranks of the previous
interviews; the catch is that you cannot recall a rejected applicant.
The optimal solution to this problem is to wait until you have
interviewed approximately 36.78% (1/e) of the applicants and then
select the next relatively best one, this gives you approximately 1/e
probability of choosing the best one.

We use these results to create a new selection mechanism and
use this mechanism to select the second parent used in crossover
from the first λ offspring. The selection of a parent does not have
the same rules as the secretary problem, therefore the results of this
algorithm might be improved by the use of different percentages.

In the selection mechanism first we sample and evaluate x (i ) ←
mutℓ (x ) for i ∈ {1, . . . , ⌊0.37λ⌋}, choose the fittest x ′ breaking
ties uniformly at random. Then we sample x (i ) ← mutℓ (x ) for
i ∈ {⌈0.37λ⌉, . . . , λ}, evaluate and compare them against x ′ one by
one, if we find an individual x (i ) that is better than x ′ we stop and
do not evaluate the remaining individuals. If we do not find such
individual all the λ offspring will be evaluated and x ′ is selected.
We also use a new update rule for the parameter λ. The pseudocode
of the complete algorithm is shown in Algorithm 1

5 EVALUATING THE PERFORMANCE OF A

PARALLEL EA

In the EA research in order to evaluate the performance of an EA a
common approach is to use the number of evaluations that takes
to solve a problem, this is because it is similar to the wall-clock
time. Following this idea for a parallel EA if we consider that the
execution of a generation dominates the computational effort it
may sound reasonable to use the number of generations. We argue
against this performance metric because for the most common
benchmark problems for EAs such as OneMax and LeadingOnes
it has been proven that an increase of the offspring population size
creates a speed-up on the parallel optimisation time but this also
increases the sequential optimisation time [18].

Other performance measures used for parallel EAs can be found
in [25], where the author define a speedup comparing the parallel
run time against a baseline. This baseline can be the sequential run
time of the best known sequential algorithm (Strong speedup), a
panmictic version of the parallel EA, or the parallel EA running in
a single computer. Later the author use this speedup to calculate the
efficiency, normalising the speedupwith the number of computers or
parallel threads used. Even though the efficiency could be considered
a good measure of performance in special cases, it does not take
into account the total computer resources used.
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Algorithm 1: The self-adjusting (1 + (λ, λ)) GA with mutation
probability p, crossover probability c , update strength G, and
optimal stopping theory for parent selection.
1 Initialisation: Sample x ∈ 0, 1n uniformly at random and

query f (x );
2 Initialise λ ← 3;
3 Optimisation: for t = 1, 2, . . . do
4 Initialise h ← 0;
5 Mutation phase:

6 Sample ℓ from B (n,p);
7 for i = 1, . . . , ⌊0.37λ⌋ do
8 Sample x (i ) ← mutℓ (x ) and query f (x (i ) );

9 Choose x ′ ∈ {x (1) , . . . ,x ( ⌊0.37λ ⌋) } with
f (x ′) = max{ f (x (1) ), . . . , f (x ( ⌊0.37λ ⌋) )} u.a.r.;

10 for i = ⌈0.37λ⌉, . . . , λ do

11 Sample x (i ) ← mutℓ (x ) and query f (x (i ) );
12 if f (x (i ) ) > f (x ′) then

13 x ′ ← x (i ) ;
14 h ← 1;
15 break

16 Crossover phase:

17 for i = 1, . . . , λ do

18 Sample y (i ) ← crossc (x ,x ′) and query f (y (i ) );

19 If exists, choose y ∈ {x ′,y (1) , . . . ,y (λ) }\{x } with
f (y) = max{ f (x ′), f (y (1) ), . . . , f (y (λ) )} u.a.r.;

20 otherwise, set y := x ;
21 Selection and update step:

22 if f (y) > f (x ) and h = 0 then x ← y; λ ← max{λ/G, 3};
23 if f (y) > f (x ) and h = 1 then x ← y;
24 if f (y) = f (x ) then x ← y; λ ← min{λG1/4,n};
25 if f (y) < f (x ) then λ ← min{λG1/4,n};

We argue that in order to compare a parallel EA, we need to take
into account both the parallel and sequential optimisation times.
For simple problems such as OneMax, a reasonable way to do this is
by calculating the contribution that every extra offspring makes to
the increase of evaluations (Ct ) and the decrease of generations (Cд )
(2). To calculate the contributions first we calculate the increase
in evaluations subtracting the number of evaluations with λ > 1
(tλ ) to the number of evaluations with λ = 1 (t1), afterwards we
normalise this increase dividing it by t1. At last we divide it by λ− 1
to know the contribution that every extra offspring is making to the
normalised increase of evaluations. For the generations we use the
same calculation, but since we expect a decrease of generations, we
subtract the number of generations with λ = 1 (д1) to the number
of generations with λ > 1 (дλ ).

Ct =
tλ − t1

t1 · (λ − 1)
Cд =

д1 − дλ
д1 · (λ − 1)

(2)

In Figure 1 we show these contributions on OneMax with n = 100.
The intersection of Ct with Cд (λ = 43) point to what we argue
is the best trade off between the number of generations and the

number of evaluations, because each extra offspring contributes the
same proportion to the increase of evaluations as to the decrease of
generations. This is true on OneMax because this is the only point
where the contributions intersect and an increase of λ will always
decrease Cд and increase Ct .

Figure 1: Contributions in evaluations and generations per off-

spring of (1 + λ) EA on OneMax

More complex problems might have several intersections, mak-
ing the use of the contributions to evaluate parallel EAs not feasible.
In order to use a similar approach of considering the contributions,
we propose a metric that aggregates the parallel and sequential
optimisation times in a meaningful single quantity that is able to
rank all algorithms and all problems. We propose the geometric
mean (GM (3)) of the number of evaluations tλ and generations дλ
for this purpose.

GM =
√
tλ · дλ (3)

The GM has several benefits, firstly it gives the same weight to
tλ and дλ , for example if we double tλ and halve дλ the GM would
stay the same. Secondly it makes an easy comparison between two
algorithms because there is no baseline needed. Lastly it take into
account the importance of the wall-clock time of parallel EAs in
form of the parallel optimisation time and also use the sequential
optimisation time to avoid the waste of computer resources in
unnecessary evaluations.

To illustrate these benefits we compare the GM of the (1 + λ)
EA on OneMax with n = 100 using different values of λ and 500
runs per instance. We can see in Figure 2 that the GM decreases
when increasing the value of λ up until λ = 43 where the number
of evaluation starts to increase more rapidly than the decrease in
generations, which is reflected in an increase of GM.

Figure 2: Geometric mean of the (1+λ) EA on OneMax with n = 100

From the empirical results the three best GM in the tested λ
are achieved at λ = 39, 43, 46. In theory for OneMax we would
expect a smooth curve with only one minimum, but due to the
randomness in the results there where 3 local minima. If we com-
pare these results with the previous calculation of contributions, it
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shows the effectiveness of the GM to select the best λ capturing the
relationship between sequential and parallel optimisation times.
6 EXPERIMENTAL RESULTS

In this section we show the detailed setup of the experiment fol-
lowed by the comparison of the algorithms with the (1 + λ) EA as
a baseline.
6.1 Experiment Design

We compare the sequential optimisation time and the GM of the 9
algorithms described in Sections 3 and 4. Each algorithm is tested
500 runs on the four landscapes, with the following problem settings.
The dimensionality n of the fitness landscape is set to 100 for all the
problems; in Makespan Scheduling the bit strings were initialised to
x ∈ {0}n and the weights were sampled from a uniform distribution
over the half-open interval [0, 1), each algorithm was tested using
the same 500 sets of weights.

An important issue was the choice of appropriate values for the
non self-adjusted parameters in each algorithm. For all (1 + λ) EA
variants, we chose small values of offspring population size λ ∈
{1, 2, 8, 10, 16, 40}1 because we are interested in the linear improve-
ment in parallel optimisation time below the λ cut-off point. For
the (1 + (λ, λ)) GA, we used small offspring population sizes of
λ ∈ {8, 10, 16, 40} guiding us in previous analyses [8, 10]. Addition-
ally bigger values of offspring population size λ ∈ {100, 400, 600}
were chosen for all algorithms to visualise the improvement in
sequential optimisation time for more complex landscapes.

The mutation probability was set to p = 1/n for all (1 + λ) EA
variants on OneMax, SufSamp and Makespan Scheduling. On
LeadingOnes the static value of p = 1.59/n was used. For the
(1+ (λ, λ)) GA there were two different settings for each value of λ ,
in the first one the mutation probability was set to p = λ/n and the
crossover probability of c = 1/λ, in the second parameter setting
the mutation and crossover probability were p = 6/n and c = 1/6.

At last the update factor in the algorithms was set between 1 and
2 following the recommendation of the authors of such algorithms.
The values used were F ∈ {1.2, 2} and G ∈ {1.1, 1.2, 1.5, 2}2. Given
the large number of parameter settings we only show the perfor-
mance of each algorithm with the best combination of settings
found and interesting findings. The code used and raw optimisation
times are given as supplementary material.
6.2 Results and Discussion

6.2.1 OneMax. From the experiments we made several obser-
vations that confirm previous theoretical and empirical studies. We
observed that smaller offspring population sizes in the family of
(1 + λ) EAs yield faster sequential optimisation times as previously
known by theoretical analyses [18]. In addition we found that for
small problem sizes the (1 + (λ, λ)) GA can be better than its self-
adjusting counterpart when using λ = 8, p = 6/n and c = 1/6 as
shown in Figure 3. Furthermore we corroborate that all the (1 + λ)
EA with success-based offspring population size tested can regu-
late with great precision the value of λ having similar sequential
optimisation times as the (1 + 1) EA.

We also made new findings with the test of the modified algo-
rithm. The Self-Adjusting (1 + (λ, λ)) GA with optimal stopping
1λ = 1 was not used in (1 + λ) EA with Two-rate Standard Bit Mutation
2Not all parameters where tested in all algorithms

theory andG = 1.5 achieved the best results in the experiments us-
ing 20% less evaluations than the original Self-Adjusting (1+ (λ, λ))
GA, which is the fastest known GA. We also tested on larger prob-
lem sizes of n = {500, 5000} with a 19-20% speedup. Analysing the
tests we found that the modified version used less generations than
the original which suggests two things; the selection mechanism
is not affecting the improvements, and for small n the update rule
used combined with the limit of λ ≥ 3 decreases the number of
generations.

To test this further we did 500 runs using the modified algorithm
with the original update rule and the original algorithm with λ ≥
3. We found that on average both the original and the modified
algorithms use the same number of generations and there is still
a 15% speedup in sequential optimisation time for n = 100. We
also tested another variation that only creates one offspring in the
mutation phase that we call Self-Adjusting (1 + (1, λ)) GA and it
performed badly, which indicates that the selection mechanism
proposed is choosing a good parent for crossover.

Figure 3: Sequential optimisation time on OneMax with n = 100

The results found for the Geometric Mean of the algorithms on
OneMax show that the success-based algorithms are worse than
static parameter choices, even taking into account the benefit of
easier choice of parameter settings. For example the (1 + λ) EA
outperformed all other success-based algorithms (including Self-
Adjusting (1 + (λ, λ)) GAs) with any offspring population size in
the interval λ = [20, 80].

To calculate the GM for the family of (1+ (λ, λ)) GAs the number
of generations was multiplied by 2 to take into account that the
evaluations needed in the mutation and crossover steps cannot be
made in parallel. Even with this consideration, the best algorithm
was the (1 + (λ, λ)) GA with λ = 16, p = 6/n and c = 1/6 followed
by the (1 + λ) EA with λ = 40 and the (1 + λ) EA with Two-rate
Standard Bit Mutation with λ = 100, F = 1.2. These results are
shown in Figure 4.

Given the nature of the Self-Adjusting (1 + (λ, λ)) GA with opti-
mal stopping theory it is not shown in Figure 4, because most of its
evaluations need to be done sequentially.

6.2.2 LeadingOnes. On LeadingOnes, the family of (1 + λ)
EAs had similar results as on OneMax as shown in Figure 5. All the
(1+λ) EAs with success-based offspring population size tested were
able to select good values for λ on the fly to reduce the sequential
optimisation time.
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Figure 4: Geometric mean on OneMax with n = 100

An important result is that all the algorithms in the family of
(1 + (λ, λ)) GAs performed worse than any of the (1 + λ) EAs
variations. To the best of our knowledge there are no empirical or
theoretical results of (1+ (λ, λ)) GAs on LeadingOnes making this
the first study to show that they do not perform well.

Figure 5: Sequential optimisation time on LeadingOnes with n =
100

From Figure 6 we can see that unlike with the sequential opti-
misation time, the variations of (1 + (λ, λ)) GA had a smaller GM
than the (1 + λ) EAs with success-based offspring population size
due to greatly reducing the parallel optimisation time. Still their
GM is at least the double of the simple (1 + λ) EA with λ = 100
and worse than any value of λ in the interval [16, 600]. The only
success-based EA with good GM was the (1 + λ) EA with two-rate
standard bit mutation having similar results than the (1 + λ) EA
with all values of λ.

6.2.3 Makespan Scheduling. On Makespan Scheduling there
was a trend in almost all algorithms to solve most of the instances
with a relatively small number of evaluations (10 - 10,000 evalua-
tions) but for difficult instances they took hundreds of thousands
or even millions of evaluations to get to the solution. In general the
static choices for the offspring population size with less evaluations,
were between λ = 10 and λ = 16.

The (1 + λ) EA with Two-rate Standard Bit Mutation had by
far the best sequential optimisation time on Makespan Scheduling
with λ = 16, F = 2 as shown in Figure 7. It was better than all other
algorithms with all parameter settings tested; the only exception
was λ = 100, F = 1.2 which was worse than the (1+λ) EA with λ =

Figure 6: Geometric mean on LeadingOnes with n = 100

10. From these results we can imply that the mutation probability of
p = 1/n is far from optimal on this problem, and studying the values
taken by the (1+λ) EAwith Two-rate Standard Bit Mutation during
the optimisation, we notice that the average mutation probability
per instance ranges from 2/n to 1/4 (all possible values) indicating
that it is instance dependant and the average over all instances is
around p = 6/n which is much higher than the standard p = 1/n.

These high mutation rates may allow the EAs escape local op-
tima by finding better searching points far away from the current
ones. A similar result can be seen in [7] where it was proved that
Artificial Immune Systems with hypermutations can find a (1 + ϵ )
approximation in expected time polynomial in n.

All of the Self-Adjusting (1+ (λ, λ)) GAs had a poor performance.
We attribute this to the relationship between the offspring popula-
tion size and the other parameters (i.e. p = λ/n and c = 1/λ). We
base this assumption on the tests made with the (1 + (λ, λ)) GA;
when using p = 6/n and c = 1/6 it had a performance similar to
other algorithms but with p = λ/n and c = 1/λ it needed up to 5
times more evaluations to get to the optimum.

Figure 7: Sequential optimisation time on Makespan Scheduling

with n = 100
On Figure 8 we see that the GM values of the (1 + λ) EAs with

success-based offspring population size were similar to the best
(1 + λ) EA, showing that these algorithms can be used in parallel
computing for more complex problems. These might be explained
by the big offspring population sizes (400, 600) that minimised the
GM for static choices. Another possible explanation is that there is
only a small increase in evaluations with larger offspring population
size and a substantial decrease of generations.
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Figure 8: Geometric mean on Makespan Scheduling with n = 100

6.2.4 Sufsamp. For SufSamp we implemented an early stop on
the optimisation process because of constraints in computation
time. The optimisation was stopped if the algorithm was in a lo-
cal optimum and more than one million evaluations were made
without improvement. This might have caused a lower success rate
and lower average fitness, affecting the most algorithms with un-
constrained self-adjusting offspring population size, but comparing
our results with the ones obtained by Jansen et al. [18] we consider
that the effects were minimal.

Unlike the other problems in SufSamp we evaluate the average
fitness of the algorithms (Figure 9) instead of the sequential optimi-
sation time and the GM. This choice was made because of the low
success rate of every algorithm (0% - 35%) which makes impossible
to compare the algorithms as with previous problems.

Figure 9: Average Fitness on Sufsamp with n = 100

From Figure 9 we can observe that the EAs with Success-Based
Offspring Population Size had a poor performance, we hypothesise
that this is caused because on the branch points in Sufsamp the
algorithms have a high probability of having a small offspring
population size causing them to take the wrong path, this makes
the population size even smaller and the probability of correcting
their path smaller. Later they reach a local optimum where they
start to increase the population size but the probability to get out
of the local optimum is almost null.

For the non self-adjusting population size algorithms, all their
best performances where with the highest offspring population
size λ = 600, which was expected. At last we can appreciate that
the (1 + λ) EA outperformed every other algorithm, even with λ =

400 (showed translucent in Figure 9). This shows the importance
of having the necessary conditions on the branch points. If the
mutation rate or the offspring population size is not the correct, it
can lead to the wrong path and ultimately to a local optimum.
7 CONCLUSIONS

In this paper we compared well known EAs and modified versions
with success-based parameter control using four artificial land-
scapes. The landscapes include two simple and well studied bench-
mark problems (OneMax, LeadingOnes), one NP-hard problem
from combinatorial optimisation (Makespan Scheduling) and a func-
tion designed to trap small offspring population sizes (SufSamp).

We proposed a new metric to evaluate the performance of EAs
that are used in parallel computing. The metric is the geometric
mean of the evaluations and generations, which takes into account
the proportion of improvement in the number of generations with-
out neglecting the proportion of increased evaluations.

From the empirical study we found the following insights from
each type of success-based parameter control mechanism.

The (1 + λ) EA with Two-rate Standard Bit Mutation showed a
good performance overall, it never was too far away from the best
algorithms and outperformed all other EAs on Makespan Schedul-
ing. It also tends to work better than other algorithms when using
large offspring population sizes.

All the (1 + λ) EAs with Success-Based Offspring Population
Size had a small increase in sequential optimisation time with the
added advantage of not needing to select the appropriate offspring
population size. The GM of these algorithms was worse than several
static choices on OneMax and LeadingOnes indicating that these
algorithms might not be a good choice for parallel computing. Even
though these algorithms had a good performance in sequential
optimisation time and GM on Makespan Scheduling, there was a
substantial difference in performance with different update factors.
Also the performance of these algorithms on SufSamp show that
they cannot update their parameters sufficiently well on problems
with several local optima that trap small offspring population sizes.
From the four EAs tested, the (1 + {Gλ, λ/s}) EA performed better
in general but it had the most variability with different selections
of the update factor G.

The (1+ (λ, λ)) GA performed badly in 3 of the 4 problems tested,
we need to note that it also has been shown to work well for several
types of problems [3, 10]. On OneMaxwe showed that the selection
mechanism based on the Optimal Stopping Theory helped improve
the results of this algorithm in problem sizes of n = {100, 500, 5000}
compared to the original Self-Adjusting (1 + (λ, λ)) GA which is
the fastest known GA on that problem.

Going forward, we intend to theoretically study the new pro-
posed algorithm to understand better why it uses fewer evaluations
and to try to improve its performance. We also intend to study
further the success-based algorithms showed here to understand
their benefits for complex problems.
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