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ABSTRACT
Recent theoretical studies have shown that self-adjusting mecha-
nisms can provably outperform the best static parameters in evo-
lutionary algorithms on discrete problems. However, the majority
of these studies concerned elitist algorithms and we do not have a
clear answer on whether the samemechanisms can be applied for
non-elitist algorithms.

We study one of the best-known parameter control mechanisms,
the one-fifth success rule, to control the offspring population size 𝜆
in the non-elitist (1, 𝜆) EA. It is known that the (1, 𝜆) EA has a sharp
threshold with respect to the choice of 𝜆 where the runtime on
OneMax changes from polynomial to exponential time. Hence, it
is not clear whether parameter control mechanisms are able to find
and maintain suitable values of 𝜆.

We show that the answer crucially depends on the success rate 𝑠
(i. e. a one-(𝑠 +1)-th success rule).We prove that, if the success rate is
appropriately small, the self-adjusting (1, 𝜆) EA optimises OneMax
in𝑂 (𝑛) expected generations and𝑂 (𝑛 log𝑛) expected evaluations.
A small success rate is crucial: we also show that if the success rate
is too large, the algorithm has an exponential runtime on OneMax.
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1 INTRODUCTION
Parameter control mechanisms aim to identify parameter values
that are optimal for the current state of the optimisation process.
In continuous optimisation, parameter control is indispensable to
ensure convergence to the optimum, therefore, non-static parameter
choices have been standard for several decades. In contrast, in the
discrete domain parameter control has only become more common
in recent years. This is in part thanks to theoretical studies demon-
strating that fitness-dependent parameter control mechanisms can
provably outperform the best static parameter settings [1, 2, 6, 9]. De-
spite the proven advantages, fitness-dependentmechanisms have an
important drawback: to have an optimal performance they generally
need to be tailored to a specific problemwhich needs a substantial
knowledge of the problem in hand [5].

To overcome this constraint, several parameter control mech-
anisms have been proposed that update the parameters in a self-
adjustingmanner. Theoretical studies have proven that in spite of
their simplicity, these mechanisms are able to use good parameter
values throughout the optimisation, obtaining the same or better
performance than any static parameter choice.

There is a growing body of research in this rapidly emerging
area. Lässig and Sudholt [18] presented self-adjusting schemes for
choosing the offspring population size in (1+𝜆) EAs and the number
of islands in an islandmodel.Mambrini and Sudholt [25] adapted the
migration interval in island models and showed that adaptation can
reduce the communication effort beyond the best possible fixed pa-
rameter. Doerr and Doerr [4] proposed a self-adjusting mechanism
in the (1 + (𝜆, 𝜆)) GA based on the one-fifth rule and proved that
it optimises OneMax in𝑂 (𝑛) evaluations, being the fastest known
unbiased genetic algorithm on OneMax. Hevia Fajardo and Sudholt
[14] studied modifications to the self-adjusting mechanism in the
(1 + (𝜆, 𝜆)) GA on Jump functions, showing that they can perform
nearly aswell as the (1 + 1) EAwith theoptimalmutation rate.Doerr,
Doerr, and Kötzing [7] presented a success-based choice of themuta-
tion strength for an RLS variant, proving that it is very efficient for a
multivariate generalisation of the OneMax problem. Doerr, Gießen,
Witt, and Yang [10] showed that a success-based parameter control
mechanism is able to identify and track the optimal mutation rate
in the (1+𝜆) EA on OneMax, matching the performance of the best
known fitness-dependent parameter [1]. Doerr, Doerr, and Lengler
[8] proved that a success-based parameter control mechanism based
on the one-fifth rule is able to achieve an asymptotically optimal
runtime on LeadingOnes. Lissovoi, Oliveto, and Warwicker [24]
proposed a Generalised RandomGradient Hyper-Heuristic that uses
a learningperiodof𝜏 steps that can learn to adapt theneighbourhood
size of Random Local Search optimally during the run on Leading-
Ones. This result required the correct selectionof the learningperiod
𝜏 ; this was later solved using a self-adjusting mechanism adapting
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the learning period having an optimal asymptotic expected runtime
on LeadingOnes [11], OneMax and Ridge [22]. Rajabi and Witt
[30, 31] proposed a stagnation detection mechanism that adjusts the
mutation strength. The mechanism applied to the (1 + 1) EA and
RLS𝑘 has the same asymptotic runtime as the optimal parameter set-
ting on Jump. Rajabi andWitt [29] used a self-adjusting asymmetric
mutation that, on OneMax, gives a constant-factor speedup over
asymmetric mutations [16]. Doerr and Doerr give a comprehensive
survey of theoretical results [5].

Most theoretical analyses of parameter control mechanisms focus
onelitist algorithms (withnotableexceptions that studyself-adaptive
mutation rate in the (1, 𝜆) EA [12] and the (𝜇, 𝜆) EA [3], and hyper-
heuristics that select between elitist and non-elitist selection [23]).
Hence, the performance of parameter control mechanisms in non-
elitist algorithms is not well understood. There are many applica-
tions of non-elitist evolutionary algorithms for which an improved
theoretical understanding of parameter control mechanisms could
bring performance improvements similar to the ones seen for elitist
algorithms.

We consider the (1, 𝜆) EA on OneMax that in every generation
creates 𝜆 offspring and selects the best one for survival. Rowe and
Sudholt [32] have shown that there is a sharp threshold at 𝜆 =

log 𝑒
𝑒−1

𝑛 between exponential and polynomial runtimes onOneMax.
A value 𝜆 ≥ log 𝑒

𝑒−1
𝑛 ensures that the offspring population size

is sufficiently large to ensure a positive drift (expected progress)
towards the optimum even on the most challenging fitness levels.
For easier fitness levels, smaller values of 𝜆 are sufficient.

This is a challenging scenario for self-adjusting theoffspringpopu-
lation size𝜆 since too small values of𝜆 can easilymake the algorithm
decrease its current fitness, moving away from the optimum. For
static values of𝜆 ≤ (1 − 𝜀) log 𝑒

𝑒−1
𝑛, for any constant 𝜀 > 0,we know

that the optimisation time is exponential with high probability [32].
Moreover, too large values for 𝜆 can waste function evaluations and
blow up the optimisation time.

We consider a self-adjusting version of the (1, 𝜆) EA called
(1, {𝐹 1/𝑠𝜆, 𝜆/𝐹 }) EA (self-adjusting (1, 𝜆) EA) that uses a success-
based rule. For an update strength 𝐹 and a success rate 𝑠 , in a gen-
eration where no improvement in fitness is found, 𝜆 is increased
by a factor of 𝐹 1/𝑠 and in a successful generation, 𝜆 is divided by a
factor 𝐹 . If one out of 𝑠 + 1 generations is successful, the value of 𝜆 is
maintained. The case 𝑠 = 4 is the famous one-fifth success rule.

We ask whether the self-adjusting (1, 𝜆) EA is able to find and
maintain suitable parameter values of 𝜆 throughout the run, despite
the lack of elitism and without knowledge of the problem in hand.

We answer this question in the affirmative if the success rate 𝑠 is
chosen correctly.We show in Section 3 that, if 𝑠 is a constantwith 0 <

𝑠 < 𝑒−1
𝑒 , then the self-adjusting (1, 𝜆) EAoptimisesOneMax in𝑂 (𝑛)

expected generations and𝑂 (𝑛 log𝑛) expected fitness evaluations.
The boundon evaluations is optimal for all unary unbiased black-box
algorithms[9, 19].However, if𝑠 is a sufficiently largeconstant,𝑠 ≥ 22,
the runtime becomes exponential with overwhelming probability
(see Section 4). The reason is that then unsuccessful generations
increase 𝜆 only slowly, whereas successful generations decrease 𝜆
significantly. We show that then the algorithm gets stuck in a non-
stable equilibriumwith small𝜆-values and frequent fallbacks (fitness
decreases) at a linear distance to the optimum.

To bound the expected number of generations for small success
rates, we apply drift analysis to a potential function that trades off
increases in fitness against a penalty term for small 𝜆-values. In
generations where the fitness decreases, 𝜆 increases and the penalty
is reduced, allowing us to show a positive drift in the potential for
all fitness levels and all 𝜆.

To bound the expected number of evaluations, we further use
the potential to construct a novel “ratchet argument”: we show that,
evenwhen the fitness decreases, it does not decreasemuch below the
best fitness seen so far.More precisely, with high probability, if 𝑓 (𝑥𝑡 )
is the current fitness at time 𝑡 and 𝑓 ∗𝑡 = max{𝑓 (𝑥𝑡 ′) | 𝑡 ′ ≤ 𝑡} is the
best fitness seen so far, then 𝑓 (𝑥𝑡 ) ≥ 𝑓 ∗𝑡 − 𝑟 log𝑛 for an appropriate
constant 𝑟 . Thenwe show that there is a constant probability that the
best-so far fitness is increased by log𝑛 in a sequence of generations
without fallbacks. We are hopeful that these arguments will prove
useful in the analysis of other non-elitist algorithms as well.

Some proofs are omitted or sketched; for a full version see [15].

2 PRELIMINARIES
We study the expected number of generations and fitness evalu-
ations of the self-adjusting (1, 𝜆) EA with self-adjusted offspring
population size𝜆 to find the optimumofOneMax(𝑥) := ∑𝑛

𝑖=1 𝑥𝑖 .We
define𝑋0, 𝑋1, . . . as the sequence of states of the algorithm, where
𝑋𝑡 = (𝑥𝑡 , 𝜆𝑡 ) describes the current search point 𝑥𝑡 and the offspring
population size 𝜆𝑡 at generation 𝑡 . We often omit the subscripts 𝑡
when the context is obvious.

Using the naming convention from [5] we call the algorithm self-
adjusting (1, {𝐹 1/𝑠𝜆, 𝜆/𝐹 }) EA (Algorithm1). The algorithmbehaves
as the conventional (1, 𝜆) EA, but in every generation it adjusts the
offspring population size depending on the success of the generation.
If the fittest offspring 𝑦 is better than the parent 𝑥 , the offspring
population size is divided by the update strength 𝐹 , and multiplied
by 𝐹 1/𝑠 otherwise, with 𝑠 being the success rate.

The idea of the parameter control mechanism is based on the
interpretationof theone-fifthsuccess rule from[17].Theparameter𝜆
remains constant if thealgorithmhasa success every𝑠+1generations
as then its new value is 𝜆 · (𝐹 1/𝑠 )𝑠 · 1/𝐹 = 𝜆. In pseudo-Boolean
optimisation, the one-fifth success rule was first implemented by
Doerr et al. [6], and proved to track the optimal offspring population
size on the (1 + (𝜆, 𝜆)) GA in [4]. Our implementation is closer to
the one used in [8], where the authors generalise the success rule,
implementing the success rate 𝑠 as a hyper-parameter.

Note that we regard 𝜆 to be a real value, so that changes by factors
of 1/𝐹 or 𝐹 1/𝑠 happen on a continuous scale. Following Doerr and
Doerr [4],we assume that,whenever an integer value of𝜆 is required,
𝜆 is rounded to a nearest integer. For the sake of readability, we often
write 𝜆 as a real value even when an integer is required.

We now give notation and tools for all (1, 𝜆) EA algorithms.

Definition 2.1. For all 𝜆 ∈ N and 0 ≤ 𝑖 < 𝑛 we define:
𝑝−
𝑖,𝜆

= Pr (𝑓 (𝑥𝑡+1) < 𝑖 | 𝑓 (𝑥𝑡 ) = 𝑖)

𝑝0
𝑖,𝜆

= Pr (𝑓 (𝑥𝑡+1) = 𝑖 | 𝑓 (𝑥𝑡 ) = 𝑖)
𝑝+
𝑖,𝜆

= Pr (𝑓 (𝑥𝑡+1) > 𝑖 | 𝑓 (𝑥𝑡 ) = 𝑖)
Δ−
𝑖,𝜆

= E (𝑖 − 𝑓 (𝑥𝑡+1) | 𝑓 (𝑥𝑡 ) = 𝑖 and 𝑓 (𝑥𝑡+1) < 𝑖)
Δ+
𝑖,𝜆

= E (𝑓 (𝑥𝑡+1) − 𝑖 | 𝑓 (𝑥𝑡 ) = 𝑖 and 𝑓 (𝑥𝑡+1) > 𝑖)
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Algorithm 1: Self-adjusting (1, {𝐹 1/𝑠𝜆, 𝜆/𝐹 }) EA.
1 Initialization: Choose 𝑥 ∈ {0, 1}𝑛 uniformly at random

(u.a.r.) and set 𝜆 := 1;
2 Optimization: for 𝑡 ∈ {1, 2, . . . } do
3 Mutation: for 𝑖 ∈ {1, . . . , 𝜆} do
4 𝑦′

𝑖
∈ {0, 1}𝑛←mutate(𝑥);

5 Selection: Choose𝑦 ∈ {𝑦′1, . . . , 𝑦
′
𝜆
} with

𝑓 (𝑦) = max{𝑓 (𝑦′1), . . . , 𝑓 (𝑦
′
𝜆
)} u.a.r.;

6 Update:
7 if 𝑓 (𝑦) > 𝑓 (𝑥) then 𝑥 ← 𝑦; 𝜆 ← max{1, 𝜆/𝐹 };
8 else 𝑥 ← 𝑦; 𝜆 ← 𝐹 1/𝑠𝜆;

As in [32], we call Δ+
𝑖,𝜆

forward drift and Δ−
𝑖,𝜆

backward drift

and note that they are both at least 1 by definition. Now, 𝑝+
𝑖,1 is

the probability of one offspring finding a better fitness value and
𝑝+
𝑖,𝜆

= 1 − (1 − 𝑝+
𝑖,1)

𝜆 since it is sufficient that oneoffspring improves
the fitness. The probability of a fallback is 𝑝−

𝑖,𝜆
= (𝑝−

𝑖,1)
𝜆 since all

offspring must have worse fitness than their parent. Along with
common bounds 𝑛−𝑖

𝑒𝑛 ≤ 𝑝+
𝑖,1 ≤

𝑛−𝑖
𝑛 and standard arguments, we

obtain the following.

Lemma 2.2. For any (1, 𝜆) EA on OneMax, the quantities from

Definition 2.1 are bounded as follows.

1 − 𝑒𝑛

𝑒𝑛 + 𝜆(𝑛 − 𝑖) ≤ 1 −
(
1 − 𝑛 − 𝑖

𝑒𝑛

)𝜆
≤ 𝑝+

𝑖,𝜆
≤ 1 −

(
1 − 𝑛 − 𝑖

𝑛

)𝜆
(1)(

𝑖

𝑛
− 1
𝑒

)𝜆
≤ 𝑝−

𝑖,𝜆
≤

(
𝑒 − 1
𝑒

)𝜆
(2)

1 ≤ Δ−
𝑖,𝜆
≤ 𝑒

𝑒 − 1 (3)

1 ≤ Δ+
𝑖,𝜆
≤
∞∑
𝑗=1

(
1 −

(
1 − 1

𝑗 !

)𝜆)
(4)

If 𝜆 ≥ 5, then Δ+
𝑖,𝜆
≤ ⌈log 𝜆⌉ + 0.413.

3 SMALL SUCCESS RATES ARE EFFICIENT
We show that, for suitable choices of the success rate 𝑠 and constant
update strength 𝐹 , the self-adjusting (1, 𝜆) EA optimises OneMax
in𝑂 (𝑛) expected generations and𝑂 (𝑛 log𝑛) expected evaluations.

3.1 Bounding the Number of Generations
Theorem 3.1. Let the update strength 𝐹 > 1 and the success rate

0 < 𝑠 < 𝑒−1
𝑒 be constants. Then for any initial search point and

any initial 𝜆 the expected number of generations of the self-adjusting

(1, 𝜆) EA on OneMax is𝑂 (𝑛).

As mentioned before, we make use of a potential function that
captures both the fitness and the offspring population size.

Definition 3.2. We define the potential function 𝑔(𝑋𝑡 ) as

𝑔(𝑋𝑡 ) = 𝑓 (𝑥𝑡 ) −
𝑠𝑒

𝑒 − 1 log𝐹

(
max

(
𝑒𝑛𝐹 1/𝑠

𝜆𝑡
, 1

))
.

The potential function is composed of twomain terms, the fitness
and a penalty term that, for 𝜆𝑡 ≤ 𝑒𝑛, grows linearly in log𝐹 𝜆 (since
− log𝐹

(
𝑒𝑛𝐹 1/𝑠

𝜆𝑡

)
= − log𝐹 (𝑒𝑛𝐹 1/𝑠 ) + log𝐹 (𝜆𝑡 )). That is, when 𝜆 in-

creases the penalty decreases and vice-versa. The idea behind this
definition is that small values of 𝜆may lead to decreases in fitness,
but these are compensated by an increase in 𝜆 and a reduction of the
penalty term. For 𝜆𝑡 ≥ 𝑒𝑛𝐹 1/𝑠 the penalty disappears as then 𝜆 is so
large that improvements are likely; we will see that this is sufficient
to show a positive drift in the potential.

Since the range of the penalty term is limited, the potential is
always close to the current fitness as shown in the following lemma.

Lemma 3.3. For all generations 𝑡 , the fitness and the potential are
related as follows: 𝑓 (𝑥𝑡 ) − 𝑠𝑒

𝑒−1 log𝐹 (𝑒𝑛𝐹
1/𝑠 ) ≤ 𝑔(𝑋𝑡 ) ≤ 𝑓 (𝑥𝑡 ). In

particular, 𝑔(𝑋𝑡 ) = 𝑛 implies 𝑓 (𝑥𝑡 ) = 𝑛.

Proof. The penalty term 𝑠𝑒
𝑒−1 log𝐹

(
max

(
𝑒𝑛𝐹 1/𝑠

𝜆𝑡
, 1

))
is a non-

increasing function in 𝜆𝑡 with its minimum being 0 for 𝜆 ≥ 𝑒𝑛𝐹 1/𝑠

and its maximum being 𝑠𝑒
𝑒−1 log𝐹

(
𝑒𝑛𝐹 1/𝑠

)
when 𝜆 = 1. Hence,

𝑓 (𝑥𝑡 ) − 𝑠𝑒
𝑒−1 log𝐹 (𝑒𝑛𝐹

1/𝑠 ) ≤ 𝑔(𝑋𝑡 ) ≤ 𝑓 (𝑥𝑡 ). □

Nowwe proceed to show that with the correct choice of hyper-
parameters the drift in potential is at least a positive constant during
all parts of the optimisation.

Lemma 3.4. Consider the self-adjusting (1, 𝜆) EA as in Theorem 3.1.

Then for every generation 𝑡 with 𝑓 (𝑥𝑡 ) < 𝑛,

E (𝑔(𝑋𝑡+1) − 𝑔(𝑋𝑡 ) | 𝑋𝑡 ) ≥
1
𝑒
− 𝑠

𝑒 − 1 > 0

for large enough𝑛. This alsoholdswhenonly considering improvements

that increase the fitness by 1.

Proof. We first consider the case 𝜆𝑡 ≤ 𝑒𝑛 as then 𝜆𝑡+1 ≤ 𝑒𝑛𝐹 1/𝑠

and 𝑔(𝑋𝑡+1) = 𝑓 (𝑥𝑡+1) − 𝑠𝑒
𝑒−1 (log𝐹 (𝑒𝑛𝐹

1/𝑠 ) − log𝐹 (𝜆𝑡+1)).
When an improvement is found, the fitness increases by at least

Δ+
𝑖,𝜆

and since 𝜆𝑡+1 = 𝜆𝑡/𝐹 , the penalty term 𝑠𝑒
𝑒−1 (log𝐹 (𝑒𝑛𝐹

1/𝑠 ) −
log𝐹 (𝜆𝑡 )) increases by 𝑠𝑒

𝑒−1 (unless𝜆𝑡+1 = 1 is reached, inwhich case
the increase might be lower). When the fitness does not change, the
penalty decreases by 𝑒

𝑒−1 . When the fitness decreases, the expected
decrease is at most Δ−

𝑖,𝜆
and the penalty decreases by 𝑒

𝑒−1 . Together,
E (𝑔(𝑋𝑡+1) − 𝑔(𝑋𝑡 ) | 𝑋𝑡 , 𝜆𝑡 ≤ 𝑒𝑛) is at least

𝑝+
𝑖,𝜆

(
Δ+
𝑖,𝜆
− 𝑠𝑒

𝑒 − 1

)
+ 𝑝0

𝑖,𝜆
· 𝑒

𝑒 − 1 + 𝑝
−
𝑖,𝜆

(
−Δ−

𝑖,𝜆
+ 𝑒

𝑒 − 1

)
.

Using Δ+
𝑖,𝜆
≥ 1 (which also holds when only considering fitness

increases by 1) and Δ−
𝑖,𝜆
≤ 𝑒

𝑒−1 by Lemma 2.2, this is at least

𝑝+
𝑖,𝜆

(
1 − 𝑠𝑒

𝑒 − 1

)
+ 𝑝0

𝑖,𝜆
· 𝑒

𝑒 − 1 .

We bound the second summand from below using 𝑒
𝑒−1 > 1 − 𝑠𝑒

𝑒−1
(note that the left-hand side is larger than 1 and the right-hand side
is less than 1) and obtain a lower bound of

𝑝+
𝑖,𝜆

(
1 − 𝑠𝑒

𝑒 − 1

)
+ 𝑝0

𝑖,𝜆

(
1 − 𝑠𝑒

𝑒 − 1

)
= (1 − 𝑝−

𝑖,𝜆
)
(
1 − 𝑠𝑒

𝑒 − 1

)
.

Lemma 2.2 shows that 𝑝−
𝑖,𝜆
≤ 𝑒−1

𝑒 for all 𝜆, hence 1 − 𝑝−
𝑖,𝜆
≥ 1

𝑒 and

E (𝑔(𝑋𝑡+1) − 𝑔(𝑋𝑡 ) | 𝑋𝑡 , 𝜆𝑡 ≤ 𝑒𝑛) ≥ 1
𝑒
− 𝑠

𝑒 − 1 .
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For the case 𝜆𝑡 > 𝑒𝑛, in an unsuccessful generation the penalty
term is capped at its maximum and we pessimistically bound the
positive effect on the potential from below by 0. However, the proba-
bility of a fitness improvement is large enough to show a positive
drift: by Lemma 2.2, 𝜆𝑡 > 𝑒𝑛 implies 𝑝+

𝑖,𝜆
≥ 1 −

(
1 − 1

𝑒𝑛

)𝑒𝑛
≥ 1 − 1

𝑒

and 𝑝−
𝑖,𝜆
Δ−
𝑖,𝜆
≤

(
𝑒−1
𝑒

)𝑒𝑛
𝑒

𝑒−1 =

(
𝑒−1
𝑒

)𝑒𝑛−1
. Together,

E (𝑔(𝑋𝑡+1) − 𝑔(𝑋𝑡 ) | 𝑋𝑡 , 𝜆𝑡 > 𝑒𝑛)

≥ 𝑝+
𝑖,𝜆

(
Δ+
𝑖,𝜆
− 𝑠𝑒

𝑒 − 1

)
+ 𝑝−

𝑖,𝜆

(
−Δ−

𝑖,𝜆

)
≥

(
1 − 1

𝑒

) (
1 − 𝑠𝑒

𝑒 − 1

)
−

(
𝑒 − 1
𝑒

)𝑒𝑛−1
.

Since
(
1 − 1

𝑒

)
= 1

𝑒 +
(
1 − 2

𝑒

)
and

(
1 − 2

𝑒

) (
1 − 𝑠𝑒

𝑒−1
)
is a positive

constant, for large enough 𝑛 this is larger than
(
𝑒−1
𝑒

)𝑒𝑛−1
and

E (𝑔(𝑋𝑡+1) − 𝑔(𝑋𝑡 ) | 𝑋𝑡 , 𝜆𝑡 > 𝑒𝑛) ≥ 1
𝑒

(
1 − 𝑠𝑒

𝑒 − 1

)
=

1
𝑒
− 𝑠

𝑒 − 1 .

Since 𝑠 < 𝑒−1
𝑒 , this is a strictly positive constant. □

With this constant lower bound on the drift of the potential, the
proof of Theorem 3.1 is now quite straightforward.

Proof of Theorem 3.1. We bound the time to get to optimum
using the potential function 𝑔(𝑋𝑡 ). Lemma 3.4 shows that the po-
tential has a positive constant drift whenever the optimum has not
been found, and by Lemma 3.3 if 𝑔(𝑋𝑡 ) = 𝑛 then the optimum has
been found. Therefore, we can bound the number of generations by
the time it takes for 𝑔(𝑋𝑡 ) to reach 𝑛.

To fit the perspective of the additive drift theorem [13] we switch
to the function 𝑔(𝑋𝑡 ) := 𝑛 − 𝑔(𝑋𝑡 ) and note that 𝑔(𝑋𝑡 ) = 0 implies
that 𝑔(𝑋𝑡 ) = 𝑓 (𝑥𝑡 ) = 𝑛. The initial value 𝑔(𝑋0) is at most 𝑛 +
𝑠𝑒
𝑒−1 log𝐹

(
𝑒𝑛𝐹 1/𝑠

)
by Lemma 3.3. Using Lemma 3.4 and the additive

drift theorem, the expected number of generations is at most

𝑛 + 𝑠𝑒
𝑒−1 log𝐹

(
𝑒𝑛𝐹 1/𝑠

)
1
𝑒 −

𝑠
𝑒−1

= 𝑂 (𝑛) . □

3.2 Bounding the Number of Evaluations
A bound on the number of generations, by itself, is not sufficient
to claim that the self-adjusting (1, 𝜆) EA is efficient. Since 𝜆 grows
exponentially in unsuccessful generations, it could quickly attain
very large values. However, we show that this is not the case and
only𝑂 (𝑛 log𝑛) evaluations are sufficient, in expectation.

Theorem 3.5. Let the update strength 𝐹 > 1 and the success rate
0 < 𝑠 < 𝑒−1

𝑒 be constants. The expectednumber of function evaluations

of the self-adjusting (1, 𝜆) EA on OneMax is𝑂 (𝑛 log𝑛).

Bounding the number of evaluations is more challenging than
bounding the number of generations as we need to keep track of the
offspring population size 𝜆 and how it develops over time. Large val-
ues of𝜆 lead to a large number of evaluationsmade in one generation.
Small values of 𝜆 can lead to a fallback.

If our algorithmwas elitist, small values of𝜆would not be an issue
since therewould beno fallbacks.Wewill show later on (Lemma3.10)
that then the algorithmwill spend𝑂 (𝑛 log𝑛) evaluations, refining

the amortised analysis from Lässig and Sudholt [18]. This analysis
relies on every fitness level being visited at most once. In our non-
elitist algorithm, this is not guaranteed. Small values of 𝜆 can lead to
decreases in fitness, and then the same fitness level can be visited
multiple times.

The reader may think that small values of 𝜆 only incur few evalu-
ations and that the additional cost for a fallback is easily accounted
for. However, it is not that simple. Imagine a fitness level 𝑖 and a large
value of 𝜆 such that a fallback is unlikely. But it is possible for 𝜆 to
decrease in a sequence of improving steps. Then we would have a
small value of 𝜆 and possibly a sequence of fitness-decreasing steps.
Suppose the fitness decreases to a value at most 𝑖 , then if 𝜆 returns
to a large value, we may have visited fitness level 𝑖 multiple times,
with large (and costly) values of 𝜆.

It is possible to show that, for sufficiently challenging fitness
levels, 𝜆moves towards an equilibrium state, i. e. when 𝜆 is too small,
it tends to increase. However, this is generally not enough to exclude
drops in 𝜆. Since 𝜆 is multiplied or divided by a constant factor in
each step, a sequence of 𝑘 improving steps decreases 𝜆 by a factor of
𝐹𝑘 , which is exponential in 𝑘 . For instance, a value of 𝜆 = log𝑂 (1) 𝑛
can decrease to 𝜆 = Θ(1) in only𝑂 (log log𝑛) generations.We found
that standard techniques such as the negative drift theorem, applied
to log𝐹 (𝜆𝑡 ), are not strong enough to exclude drops in 𝜆.

We solve this problem as follows. We consider the best-so-far
fitness 𝑓 ∗𝑡 = max{𝑓 (𝑥𝑡 ′) | 0 ≤ 𝑡 ′ ≤ 𝑡} at time 𝑡 (as a theoretical
concept, as the self-adjusting (1, 𝜆) EA is non-elitist and unaware
of the best-so-far fitness) and use drift arguments from Section 3.1,
and the negative drift theorem [26, 27] to show that, with high
probability, the current fitness never drops far below 𝑓 ∗𝑡 , that is,
𝑓 (𝑥𝑡 ) ≥ 𝑓 ∗𝑡 − 𝑟 log𝑛 for a constant 𝑟 > 0. This yields a ratchet

argument: if the best-so-far fitness increases, the lower bound on
the current fitness increases as well.

It remains to show that the best-so-far fitness increases efficiently.
We divide the run into fitness intervals of size log𝑛 that we call
blocks, and bound the time for the best-so-far fitness to reach a better
block. This task is easier than bounding the time to go all the way to
the optimum since it is sufficient to have a sequence of generations
in which 𝜆 maintains large enough values (i. e. 𝜆 ≥ 4 log𝑛) such
that with high probability the fitness does not decrease and the self-
adjusting (1, 𝜆) EA temporarily behaves like an elitist algorithm.
We show that, starting from an arbitrary 𝜆-value, the probability of
having such a sequence is Ω(1) and that the expected time to reach
the next block is only by at most a constant factor larger than that of
an elitist algorithm. Adding up expected times for each block then
yields the claimed𝑂 (𝑛 log𝑛) bound.

We first re-use the potential drift arguments from the proof of
Theorem 3.1 to show that the number of generations to increase the
current fitness to a newblock is bounded as follows. For𝑏 = 𝑎+ log𝑛,
this bound is𝑂 (log𝑛).

Lemma 3.6. Consider the self-adjusting (1, 𝜆) EA as in Theorem 3.5.

For every 𝑎, 𝑏 ∈ N, the expected number of generations to increase the

current fitness from a value at least 𝑎 to at least 𝑏 is at most

𝑏 − 𝑎 + 𝑠𝑒
𝑒−1 log𝐹

(
𝑒𝑛𝐹 1/𝑠

)
1
𝑒 −

𝑠
𝑒−1

= 𝑂 (𝑏 − 𝑎 + log𝑛) .
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Proof. We use the proof of Theorem 3.1 with a revised potential
function of 𝑔′(𝑋𝑡 ) := max(𝑔(𝑋𝑡 ) − (𝑛 − 𝑏), 0) and stopping when
𝑔′(𝑋𝑡 ) = 0 (which implies that a fitness of at least 𝑏 is reached) or a
fitness of at least 𝑏 is reached beforehand. Note that the maximum
caps the effect of fitness improvements that jump to fitness values
larger than 𝑏. As remarked in Lemma 3.4, the drift bound for 𝑔(𝑋𝑡 )
still holds when only considering fitness improvements by 1. Hence,
it also holds for 𝑔′(𝑋𝑡 ) and the analysis goes through as before. □

Nowweshowour ratchet argument and thatwithhighprobability
the fitness does not decrease when 𝜆 ≥ 4 log𝑛.

Lemma 3.7. Consider the self-adjusting (1, 𝜆) EA as in Theorem 3.5.

Let 𝑓 ∗𝑡 := max𝑡 ′≤𝑡 𝑓 (𝑥𝑡 ′) be its best-so-far fitness at generation 𝑡 and
let𝑇 be the first generation in which the optimum is found. Then with

probability 1−𝑂 (1/𝑛) the following statements hold for a large enough

constant 𝑟 > 0 (that may depend on 𝑠).

(1) For all 𝑡 ≤ 𝑇 in which 𝜆𝑡 ≥ 4 log𝑛, we have 𝑓 (𝑥𝑡+1) ≥ 𝑓 (𝑥𝑡 ).
(2) For all 𝑡 ≤ 𝑇 , the fitness is at least: 𝑓 (𝑥𝑡 ) ≥ 𝑓 ∗𝑡 − 𝑟 log𝑛.

Proof. Let 𝐸𝑡1 denote the event that 𝜆𝑡 < 4 log𝑛 or 𝑓 (𝑥𝑡+1) ≥
𝑓 (𝑥𝑡 ). Hence we only need to consider 𝜆𝑡 -values of 𝜆𝑡 ≥ 4 log𝑛 ≥
2 log 𝑒

𝑒−1
𝑛 and by Lemma 2.2 we have

Pr
(
𝐸𝑡1

)
≤

(
𝑒 − 1
𝑒

)𝜆𝑡
≤

(
𝑒 − 1
𝑒

)2 log 𝑒
𝑒−1

𝑛

=
1
𝑛2

.

By a union bound, the probability that this happens in the first𝑇
generations is at most

∑∞
𝑡=1 Pr (𝑇 = 𝑡) · 𝑡/𝑛2 = E (𝑇 ) /𝑛2 = 𝑂 (1/𝑛).

For the second statement, let 𝑡∗ be a generation in which the best-
so-far fitness was attained: 𝑓 (𝑥𝑡∗ ) = 𝑓 ∗𝑡 . By Lemma 3.3, abbreviating
𝛼 := 𝑠𝑒

𝑒−1 log𝐹 (𝑒𝑛𝐹
1/𝑠 ), the condition 𝑓 (𝑥𝑡∗ ) ≥ 𝑓 (𝑥𝑡 ) + 𝑟 log𝑛 im-

plies𝑔(𝑋𝑡∗ ) ≥ 𝑓 (𝑥𝑡∗ ) −𝛼 ≥ 𝑓 (𝑥𝑡 ) −𝛼 +𝑟 log𝑛 ≥ 𝑔(𝑋𝑡 ) −𝛼 +𝑟 log𝑛.
Now define events 𝐸𝑡2 = (∀𝑡 ′ ∈ [𝑡 + 1, 𝑛2] : 𝑔(𝑋𝑡 ′) ≥ 𝑔(𝑋𝑡 ) +

𝛼 − 𝑟 log(𝑛)). We apply the negative drift theorem [26, 27] to bound
Pr

(
𝐸𝑡2

)
from above. For any 𝑡 < 𝑛2 let 𝑎 := 𝑔(𝑋𝑡 ) − 𝑟 log𝑛 + 𝛼

and 𝑏 := 𝑔(𝑥𝑡 ) < 𝑛, where 𝑟 > 𝛼 will be chosen later on. We
pessimistically assume that the fitness component of 𝑔 can only
increase by atmost 1. Lemma 3.4 has already shown that, even under
this assumption, the drift is at least a positive constant. This implies
the first condition of Theorem 2 in [27]. For the second condition,
we need to bound transition probabilities for the potential. Owing
to our pessimistic assumption, the current fitness can only increase
by at most 1. The fitness only decreases by 𝑗 if all offspring are
worse than their parent by at least 𝑗 . Hence, for all 𝜆, the decrease
in fitness is bounded by the decrease in fitness of the first offspring.
The probability of the first offspring decreasing fitness by at least 𝑗 is
bounded by the probability that 𝑗 bits flip, which is in turn bounded
by 1/( 𝑗 !) ≤ 2/2𝑗 . The possible penalty in the definition of𝑔 changes
by at most max

(
𝑠𝑒
𝑒−1 ,

𝑠𝑒
𝑒−1 ·

1
𝑠

)
= 𝑒

𝑒−1 < 1. Hence, for all 𝑡 ,

Pr ( |𝑔(𝑋𝑡−1) − 𝑔(𝑋𝑡 ) | ≥ 𝑗 + 1 | 𝑔(𝑋𝑡 ) > 𝑎) ≤ 4
2𝑗+1

,

which meets the second condition of Theorem 2 in [27]. It then
states that there is a constant 𝑐∗ such that the probability that within
2𝑐∗ (𝑎−𝑏)/4 generations a potential of at most 𝑎 is reached, starting
from a value of at least 𝑏, is 2−Ω (𝑎−𝑏) . By choosing the constant 𝑟

large enough, we can scale up 𝑎 − 𝑏 and thus make 2𝑐∗ (𝑎−𝑏)/4 ≥ 𝑛2

and 2−Ω (𝑎−𝑏) = 𝑂 (1/𝑛2). This yields Pr
(
𝐸𝑡2

)
= 𝑂 (1/𝑛2).

Arguing as before, the probability that 𝐸𝑡2 happens during𝑂 (𝑛)
expected generations is𝑂 (1/𝑛). By Markov’s inequality, the proba-
bility of not finding the optimum in𝑛2 generations is𝑂 (1/𝑛) as well.
Adding up all failure probabilities completes the proof. □

The following lemma bounds the probability of increasing a small
𝜆 value to a desired one from below.

Lemma 3.8. Consider the self-adjusting (1, 𝜆) EA as in Theorem 3.5

and assume that the typical events stated in Lemma 3.7 occur. Let

𝑖 := 𝑓 (𝑥𝑡 ) and 𝑟 be the constant from Lemma 3.7. Then for all 𝜆new ≥
𝜆init ≥ 1 the probability that 𝜆 is increased from 𝜆init to 𝜆new in a

sequence of 𝑠 log𝐹 (𝜆new/𝜆init) non-improving generations is at least

1 −
𝜆new𝑝+𝑖−𝑟 log𝑛,1

𝐹 1/𝑠 − 1

Proof. While no improvement is found, 𝜆 is multiplied by 𝐹 1/𝑠
in every iteration. Then 𝜆 reaches a value of 𝜆new from 𝜆init in𝛾 :=
𝑠 log𝐹 (𝜆new/𝜆init) iterations (since𝜆init ·𝐹𝑠 log𝐹 (𝜆new/𝜆init)/𝑠 = 𝜆new).
The number of evaluations made during this time is at most

𝛾−1∑
𝑗=0

𝜆init · 𝐹 𝑗/𝑠 = 𝜆init ·
𝛾−1∑
𝑗=0
(𝐹 1/𝑠 ) 𝑗 = 𝜆init ·

(𝐹 1/𝑠 )𝛾 − 1
𝐹 1/𝑠 − 1

= 𝜆init ·
𝜆new/𝜆init − 1

𝐹 1/𝑠 − 1
≤ 𝜆new

𝐹 1/𝑠 − 1
.

Since, owing to Lemma3.7, the fitness is always at least 𝑖−𝑟 log𝑛 and
𝑝+
𝑖,1 is non-increasing in 𝑖 , the probability of an improvement during
any offspring creation is at most 𝑝+

𝑖−𝑟 log𝑛,1. By a union bound, the

probability of having an improvement during 𝜆new
𝐹 1/𝑠−1 mutations of a

search point with fitness 𝑖 is at most
𝜆new𝑝+𝑖−𝑟 log𝑛,1

𝐹 1/𝑠−1 . □

Nowwe bound the probability of returning to a small value of 𝜆.

Lemma 3.9. Consider the self-adjusting (1, 𝜆) EA as in Theorem 3.5

and assume that the typical events stated in Lemma 3.7 occur. If the

current fitness is 𝑓 (𝑥𝑡 ) ≥ 𝑛 − 𝑛/log3 𝑛 and 𝜆𝑡 ≥ 4 log3 𝑛, then, for
every constant𝐶 > 0, the probability that within𝐶 log𝑛 iterations a
𝜆-value of at most 4 log𝑛 is reached is at most (log𝑛)−𝜔 (1) .

Proof. We assume that 𝜆𝑡 < 4𝐹 log3 𝑛 as otherwise we can wait
until 𝜆 drops below 4𝐹 log3 𝑛 (or𝐶 log𝑛 generations have passed).

By Lemma 3.7, while 𝜆 ≥ 4 log𝑛 the current fitness does not
decrease. Consequently, the probability of an offspring finding an
improvement is always bounded from above by 𝑝+

𝑖,1 ≤
1

log3 𝑛 .

For 𝑘 := 2 log𝐹 (log𝑛) we have 4 log3 (𝑛)/𝐹𝑘 = 4 log𝑛. A neces-
sary condition to decrease 𝜆 from a value at least 4 log3 𝑛 to a value
below 4 log𝑛 is that for every 𝑗 ∈ {0, . . . , 𝑘 − 1} there exist gener-
ations in which an improvement is found while 𝜆 ≤ 4 log3 (𝑛)/𝐹 𝑗 .
Then, by a union bound, the probability of finding an improvement
is at most 4 log3 (𝑛)/𝐹 𝑗 ·𝑝+

𝑖,1. There are
(𝐶 log𝑛

𝑘

)
ways to choose these

generations. Once these are fixed, the joint probability of having
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improvements in all these iterations is at most
𝑘−1∏
𝑗=0

(
4𝐹 log3 𝑛

𝐹 𝑗
· 𝑝+𝑖,1

)
≤

(
4𝐹 log3 (𝑛)𝑝+𝑖,1

)𝑘
𝐹
−∑𝑘−1

𝑗=0 𝑗

≤ (4𝐹 )𝑘 𝐹−𝑘 (𝑘−1)/2 .

Along with a factor of
(𝐶 log𝑛

𝑘

)
≤ (𝑒𝐶 log(𝑛)/𝑘)𝑘 we bound the

sought probability as(
𝜆𝑡𝑝
+
𝑖,1𝑒𝐶 log𝑛

𝑘𝐹 (𝑘−1)/2

)𝑘
≤

(
4𝐹 log3 (𝑛) · 1/(log3 𝑛) · 𝑒𝐶 log𝑛

𝑘𝐹−1/2 log𝑛

)𝑘
=

(
4𝑒𝐶𝐹 3/2

𝑘

)𝑘
= (log log𝑛)−Ω (log log𝑛) = (log𝑛)−Ω (log log log𝑛) . □

While the fitness does not decrease, the self-adjusting (1, 𝜆) EA
behaves like an elitist algorithm, i. e. a (1 + {𝐹 1/𝑠𝜆, 𝜆/𝐹 }) EA. We
bound its expected time to increase the fitness from 𝑎 to 𝑏.

Lemma 3.10. Consider the elitist (1+{𝐹 1/𝑠𝜆, 𝜆/𝐹 }) EA onOneMax

with 𝑓 (𝑥0) ≥ 𝑎 and 𝜆0 = 𝜆init. For every 𝑏 ∈ N, the expected number

of evaluations for it to reach a fitness of at least 𝑏 is at most

𝜆init ·
𝐹

1 − 𝐹 + 𝑛 ·
(2 + 2𝑒)𝐹 1/𝑠 − 1

𝐹 1/𝑠 − 1
· 𝐹

𝑠+1
𝑠 − 1
𝐹 − 1

𝑏−1∑
𝑗=𝑎

1
𝑛 − 𝑗

.

As a side note, the lemma immediately implies the following.

Corollary 3.11. The expected number of evaluations of the elitist

(1 + {𝐹 1/𝑠𝜆, 𝜆/𝐹 }) EA on OneMax is𝑂 (𝑛 log𝑛).

Proof of Lemma 3.10. We refine the accounting method used in
the analysis of the (1 + {2𝜆, 𝜆/2}) EA in [18]. The main idea is: if
some fitness level 𝑖 increases 𝜆 to a large value, we charge the costs
for increasing 𝜆 to that fitness level. In addition, we charge costs
that pay for decreasing 𝜆 down to 1 in future successful generations.
Hence, a successful generation comes for free, at the expense of a
constant factor for the cost of unsuccessful generations.

Let 𝜙 (𝜆𝑡 ) := 𝐹
𝐹−1𝜆𝑡 and imagine a fictional bank account. We

make an initial payment of 𝜙 (𝜆init) to that bank account. If a gen-
eration 𝑡 is unsuccessful, we pay 𝜆𝑡 for the current generation and
deposit an additional amount of 𝜙 (𝜆𝑡 𝐹 1/𝑠 ) − 𝜙 (𝜆𝑡 ). If an improve-
ment is found, we withdraw an amount of 𝜆𝑡 to pay for generation 𝑡 .

We show by induction: for every generation 𝑡 , the account’s bal-
ance is 𝜙 (𝜆𝑡 ). This is true for the initial generation owing to the
initial payment of 𝜙 (𝜆init). Assume the statement holds for time 𝑡 . If
generation 𝑡 is unsuccessful, the new balance is

𝜙 (𝜆𝑡 ) + (𝜙 (𝜆𝑡 𝐹 1/𝑠 ) − 𝜙 (𝜆𝑡 )) = 𝜙 (𝜆𝑡 𝐹 1/𝑠 ) = 𝜙 (𝜆𝑡+1) .
If generation 𝑡 is successful, 𝜆𝑡+1 = 𝜆𝑡/𝐹 and the new balance is

𝜙 (𝜆𝑡 ) − 𝜆𝑡 =
(

𝐹

𝐹 − 1 − 1
)
𝜆𝑡 =

1
𝐹 − 1 · 𝜆𝑡 =

𝐹

𝐹 − 1 · 𝜆𝑡+1 = 𝜙 (𝜆𝑡+1) .

The costs of an unsuccessful generation 𝑡 are

𝜆𝑡 + 𝜙 (𝜆𝑡 𝐹 1/𝑠 ) − 𝜙 (𝜆𝑡 ) = 𝜆𝑡

(
1 + 𝐹

𝑠+1
𝑠

𝐹 − 1 −
𝐹

𝐹 − 1

)
= 𝜆𝑡 ·

𝐹
𝑠+1
𝑠 − 1
𝐹 − 1 .

We show that the expected number of evaluations in unsuccessful
generations on fitness level 𝑖 is at most 𝑛

𝑛−𝑖 ·
(2+2𝑒)𝐹 1/𝑠−1

𝐹 1/𝑠−1 , for all

initial 𝜆. Multiplying with the above factor of 𝐹
𝑠+1
𝑠 −1
𝐹−1 and adding up

costs for all fitness levels as well as costs 𝜙 (𝜆init) = 𝜆init · 𝐹
1−𝐹 for

the initial 𝜆 yields the claimed bound.
After 𝑗 generations the offspring population size is𝜆𝐹 𝑗/𝑠 .We only

count these terms if there has been no success. The expected number
of evaluations in unsuccessful generations is at most

∞∑
𝑗=0

𝜆𝐹 𝑗/𝑠 · Pr
(
no success with 𝜆𝐹 𝑗/𝑠 offspring

)
≤
∞∑
𝑗=0

𝜆𝐹 𝑗/𝑠 ·
(
1 − 𝑛 − 𝑖

𝑒𝑛

)𝜆𝐹 𝑗/𝑠

≤
∞∑
𝑗=0

𝜆𝐹 𝑗/𝑠 · 𝑒−
𝑛−𝑖
𝑒𝑛
·𝜆𝐹 𝑗/𝑠

. (5)

Let 𝑘 ∈ N0 be the smallest integer such that 𝑛−𝑖
𝑒𝑛 · 𝜆𝐹

𝑘/𝑠 ≥ 2. The
function 𝜉 (𝑥) := 𝑥 · 𝑒−𝑝𝑥 attains its maximum 1/(𝑒𝑝) at 𝑥 = 1/𝑝 and
for 𝑝𝑥 ≥ 2 it decays exponentially:

𝜉 (𝑥)
𝜉 (𝑥𝐹 1/𝑠 )

=
𝑒 (𝐹

1/𝑠−1)𝑝𝑥

𝐹 1/𝑠
≥ 𝑒2𝐹

1/𝑠−2

𝐹 1/𝑠
≥ 2𝐹 1/𝑠 − 1

𝐹 1/𝑠
= 2 − 𝐹−1/𝑠 > 1.

Bounding the summand 𝑗 = 𝑘 in (5) by 𝜉 ’s maximum, 1𝑒 ·
𝑒𝑛
𝑛−𝑖 =

𝑛
𝑛−𝑖 ,

and exploiting the exponential decay for all following terms,
∞∑
𝑗=𝑘

𝜆𝐹 𝑗/𝑠 · 𝑒−
𝑛−𝑖
𝑒𝑛
·𝜆𝐹 𝑗/𝑠

≤
∞∑
𝑗=𝑘

𝑛

𝑛 − 𝑖 · (2 − 𝐹
−1/𝑠 )𝑘−𝑗

=
𝑛

𝑛 − 𝑖 ·
2 − 𝐹−1/𝑠

1 − 𝐹−1/𝑠
=

𝑛

𝑛 − 𝑖 ·
2𝐹 1/𝑠 − 1
𝐹 1/𝑠 − 1

.

For 𝑘 > 0 we bound the terms for 𝑗 < 𝑘 , using 𝑛−𝑖
𝑒𝑛 · 𝜆𝐹

(𝑘−1)/𝑠 < 2
by definition of 𝑘 ,

𝑘−1∑
𝑗=0

𝜆𝐹 𝑗/𝑠 · 𝑒−
𝑛−𝑖
𝑒𝑛
·𝜆𝐹 𝑗/𝑠

≤
𝑘−1∑
𝑗=0

𝜆𝐹 𝑗/𝑠 =
𝑘−1∑
𝑗=0

𝜆𝐹 (𝑘−1)/𝑠 · 𝐹−𝑗/𝑠

≤
𝑘−1∑
𝑗=0

2𝑒𝑛
𝑛 − 𝑖 · 𝐹

−𝑗/𝑠 ≤ 2𝑒𝑛
𝑛 − 𝑖

∞∑
𝑗=0

𝐹−𝑗/𝑠 =
2𝑒𝑛
𝑛 − 𝑖 ·

𝐹 1/𝑠

𝐹 1/𝑠 − 1
.

The sum in (5) is atmost 𝑛
𝑛−𝑖 ·

(2+2𝑒)𝐹 1/𝑠−1
𝐹 1/𝑠−1 , completing the proof. □

Lemma3.12. Consider the self-adjusting (1, 𝜆) EAas in Theorem3.5

and assume that the typical events stated in Lemma 3.7 occur. Let 𝑓 ∗𝑡 be

the best-so-far fitness at time 𝑡 . If 𝑓 ∗𝑡 ≥ 𝑛−𝑛/log3 𝑛 and 𝑓 ∗𝑡 ≤ 𝑛− log𝑛,
the expected number of evaluations made until the best-so-far fitness

increases to at least 𝑓 ∗𝑡 + log𝑛 is at most

𝛽 · ©­«𝜆𝑡 + log3 (𝑛) log log(𝑛) +
𝑓 ∗𝑡 +log𝑛∑

𝑗=𝑓 ∗𝑡 −𝑟 log𝑛

𝑛

𝑛 − 𝑗

ª®¬
for some constant 𝛽 > 0 (that depends on 𝑠 and 𝐹 ).

Proof. We first show that the expected number of evaluations
until either a fitness of at least 𝑓 ∗𝑡 + log𝑛 is reached or 𝜆 ≥ 4 log3 𝑛
is reached is bounded by𝑂 (log3 (𝑛) log log𝑛).

By Lemma 3.8, the probability that in a sequence of𝑂 (log log𝑛)
generations a 𝜆-value of at least 4 log3 𝑛 is reached is at least

1−
4 log3 (𝑛)𝑝+

𝑖−𝑟 log𝑛,1

𝐹 1/𝑠 − 1
≥ 1− 4 log

3 (𝑛)
𝐹 1/𝑠 − 1

· 𝑛/log
3 𝑛 + 𝑟 log𝑛
𝑒𝑛

= Ω(1) .
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Hence, the expected number of phases of𝑂 (log log𝑛) generations
for this to happen is 𝑂 (1). As every generation makes at most
4𝐹 1/𝑠 log3 𝑛 evaluations, the expected number of evaluations is
𝑂 (log3 (𝑛) log log𝑛).

Now assume 𝜆 ≥ 4 log3 𝑛. We say that a failure occurs if 𝜆 drops
below 4 log𝑛 before the fitness is increased to at least 𝑓 ∗𝑡 + log𝑛.
By Lemma 3.6, the expected number of generations to increase the
fitness from 𝑓 ∗𝑡 to at least 𝑓 ∗𝑡 + log𝑛 is at most 𝑐gen log𝑛, for a con-
stant 𝑐gen. By Markov’s inequality, the probability that more than
2𝑐gen log𝑛 generations are needed is at most 1/2. By Lemma 3.9, the
probability of decreasing 𝜆 to less than 4 log𝑛 in the next 2𝑐gen log𝑛
generations is (log𝑛)−𝜔 (1) . By a union bound, the probability of a
failure is at most 1/2 + (log𝑛)−𝜔 (1) .

While no failure occurs, the algorithm behaves like a (1 +
{𝐹 1/𝑠𝜆, 𝜆/𝐹 }) EA. Applying Lemma 3.10 with 𝑎 := 𝑓 ∗𝑡 − 𝑟 log𝑛 and
𝑏 := 𝑓 ∗𝑡 + log𝑛, the expected number of evaluations until a fitness of
at least 𝑓 ∗𝑡 + log𝑛 is found or a fallback occurs is at most

𝜆init ·
𝐹

1 − 𝐹 + 𝑛 ·
(2 + 2𝑒)𝐹 1/𝑠 − 1

𝐹 1/𝑠 − 1
· 𝐹

𝑠+1
𝑠 − 1
𝐹 − 1

𝑓 ∗𝑡 +log𝑛−1∑
𝑗=𝑓 ∗𝑡 −𝑟 log𝑛

1
𝑛 − 𝑗

.

In case of a failure we iterate the above arguments; this increases the
expected number of evaluations only by a factor 2 + 𝑜 (1). □

Lemma3.13. Consider the self-adjusting (1, 𝜆) EAas inTheorem3.5.

If the best-so-far fitness at time 𝑡 is at most 𝑖 then

E (𝜆𝑡 | 𝜆0) ≤ ⌊𝜆0/𝐹 𝑡 ⌋ +
𝑒𝑛

𝑛 − 𝑖 ·
(
𝐹 1/𝑠 + 𝐹 1/𝑠

ln 𝐹

)
.

Proof sketch for Lemma 3.13. Since the fitness in all genera-
tions 𝑡 ′ ≤ 𝑡 is at most 𝑖 , the probability of one offspring finding
an improvement at time 𝑡 ′ is at least 𝑛−𝑖

𝑒𝑛 . We have E (𝜆𝑡 | 𝜆0) =∑∞
𝑥=1 Pr (𝜆𝑡 ≥ 𝑥 | 𝜆0) and bound the latter probabilities from above.

If𝜆0 ≥ 𝑥 ·𝐹 𝑡 then𝜆𝑡 ≥ 𝑥 withprobability 1. If𝜆0 < 𝑥 ·𝐹 𝑡 ,𝜆𝑡 ≥ 𝑥 only
holds if there has been at least one generationwhere 𝜆was increased.
Let 𝑡 − 𝑘 > 0 be the last such generation, that is, 𝜆𝑡−𝑘 = 𝜆𝑡−𝑘−1𝐹

1/𝑠 .
Since all generations 𝑡 − 𝑘, . . . , 𝑡 − 1 are successful, 𝜆𝑡 ≥ 𝑥 implies
𝜆𝑡−𝑘 ≥ 𝑥𝐹𝑘 and hence 𝜆𝑡−𝑘−1 ≥ 𝑥𝐹𝑘−1/𝑠 .

For all 𝑥 > 𝜆0/𝐹 𝑡 , Pr (𝜆𝑡 ≥ 𝑥 | 𝜆0) is at most
∞∑
𝑘=1

Pr
(
no success with 𝑥𝐹𝑘

𝐹 1/𝑠
offspring

)
≤
∞∑
𝑘=1

(
1 − 𝑛 − 𝑖

𝑒𝑛

) 𝑥𝐹𝑘

𝐹 1/𝑠
.

Bounding this by
(
1 − 𝑛−𝑖

𝑒𝑛

)𝑥/𝐹 1/𝑠

for 𝑥 > 𝜆0/𝐹 𝑡 and 𝑥 ≥ 𝑒𝑛
𝑛−𝑖 ·

𝐹 1/𝑠

ln 𝐹

and using Pr (𝜆𝑡 ≥ 𝑥 | 𝜆0) ≤ 1 for 𝑥 ≤ max
(
⌊𝜆0/𝐹 𝑡 ⌋,

⌊
𝑒𝑛
𝑛−𝑖 ·

𝐹 1/𝑠

ln 𝐹

⌋ )
proves the claim. □

Nowwe are in a position to prove Theorem 3.5.

Proof of Theorem 3.5. We divide the optimisation in several
phases. Phase 1 ends when the distance to the optimum is at most
𝑛/log𝑛. By Lemma 3.6 the expected number of generations spent in
Phase 1, called𝑇1, is E (𝑇1) = 𝑂 (𝑛).

The expected number of function evaluations during this time
is E

(
𝜆0 + 𝜆1 + · · · + 𝜆𝑇1−1

)
=

∑𝑇1−1
𝑡=0 E (𝜆𝑡 | 𝜆0). We bound all sum-

mands by Lemma 3.13, applied with a worst case fitness of 𝑖 :=

𝑛 − 𝑛/log𝑛. This yields a random variable 𝜆∗ with

E
(
𝜆∗

)
≤ 𝑒𝑛

𝑛/log𝑛 ·
(
𝐹 1/𝑠 + 𝐹 1/𝑠

ln 𝐹

)
= 𝑒 log𝑛 ·

(
𝐹 1/𝑠 + 𝐹 1/𝑠

ln 𝐹

)
and E (𝜆∗) ≥ E (𝜆𝑡 | 𝜆0) for all 𝑡 < 𝑇1. Thus, the expected time in
Phase 1 can be bounded by 𝑇1 iid variables 𝜆∗. Since 𝑇1 is itself a
random variable, we applyWald’s equation [33] to conclude that

𝑇1−1∑
𝑡=0

E
(
𝜆∗

)
= E (𝑇1) · E

(
𝜆∗

)
= 𝑂 (𝑛 log𝑛).

Phase 2 endswhen the distance to the optimum is atmost𝑛/log2 𝑛.
Again, by Lemma 3.6 the expected number of generations is𝑇2 with
E (𝑇2) = 𝑂 (𝑛/log𝑛) and the expected number of evaluations in one
generation is bounded by 𝑒 log2 𝑛 ·

(
𝐹 1/𝑠 + 𝐹 1/𝑠

ln 𝐹

)
using Lemma 3.13

with a worst-case fitness of 𝑖 := 𝑛 − 𝑛/log2 𝑛. Wald’s equation then
yields a bound of𝑂 (𝑛/log𝑛) ·𝑂 (log2 𝑛) = 𝑂 (𝑛 log𝑛).

Phase 3 ends with the distance to the optimum is at most𝑛/log3 𝑛
and we obtain another bound of𝑂 (𝑛 log𝑛) in the same way.

Phase 4 ends when the optimum is found. We divide the distance
to the optimum in blocks of length log𝑛. Let𝑇𝑖 be the randomnumber
of evaluations to increase the best fitness fromat least𝑛−𝑛/log3 (𝑛)+
(𝑖 − 1) log𝑛 to a fitness of at least 𝑛 − 𝑛/log3 (𝑛) + 𝑖 log𝑛. Let 𝜆∗

𝑖
be

the 𝜆-value in the first generationwhere this block 𝑖 is reached. Then
the expected number of evaluations to find the optimum from a best
fitness of at least 𝑛 − 𝑛/log3 𝑛 is at most

E ©­«
𝑛/log4 𝑛∑

𝑖=1
𝑇𝑖

ª®¬ =

𝑛/log4 𝑛∑
𝑖=1

E (𝑇𝑖 ) =
𝑛/log4 𝑛∑

𝑖=1
E

(
E

(
𝑇𝑖 | 𝜆∗𝑖

) )
By Lemma 3.12, this is at most

𝑛/log4 𝑛∑
𝑖=1

E
©­­«𝛽

©­«𝜆∗𝑖 + log3 (𝑛) log log(𝑛) +
𝑛−𝑛/log3 (𝑛)+𝑖 log(𝑛)−1∑

𝑗=𝑛−𝑛/log3 (𝑛)+(𝑖−1−𝑟 ) log𝑛

1
𝑛 − 𝑗

ª®®¬
ª®®¬ .

The terms 𝛽 log3 (𝑛) log log𝑛 sum up to𝑂 (𝑛 log log𝑛). Note that

𝛽

𝑛/log4 𝑛∑
𝑖=1

𝑛−𝑛/log3 (𝑛)+𝑖 log(𝑛)−1∑
𝑗=𝑛−𝑛/log3 (𝑛)+(𝑖−1−𝑟 ) log𝑛

1
𝑛 − 𝑗

≤ 𝛽

𝑛−1∑
𝑖=0

𝑟 + 1
𝑛 − 𝑗

= 𝑂 (𝑛 log𝑛)

since every summand 1
𝑛−𝑗 appears in at most 𝑟 + 1 blocks. Finally,

by Lemma 3.13,
∑𝑛/log4 𝑛
𝑖=1 E

(
𝜆∗
𝑖

)
= 𝑂 (𝑛 log𝑛) with room to spare.

In case a failure occurs, we repeat the above arguments. Note that
then we start the analysis with 𝜆0 being the 𝜆-value at the time of
the failure. A large 𝜆-value may incur additional costs. However,
applying Lemma 3.13 with a fitness of 𝑖 = 𝑛 shows that then the
expected 𝜆-value is at most 𝑂 (𝑛). And, since the ⌊𝜆0/𝐹 𝑡 ⌋ term in
Lemma 3.13 decays exponentially in 𝑡 , a value 𝜆0 = 𝑂 (𝑛) only incurs
additional costs of at most

∑∞
𝑡=0 𝜆0/𝐹 𝑡 = 𝜆0 · 𝐹

𝐹−1 in subsequent
generations. Since failures have a probability of𝑂 (1/𝑛), the expected
number of repetitions is 1 +𝑂 (1/𝑛) and all additional costs can be
absorbed in the𝑂 (𝑛 log𝑛) bound. □
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4 LARGE SUCCESS RATES FAIL
We show that the choice of the success rate is crucial as when 𝑠 is a
large constant, the runtime becomes exponential.

Theorem 4.1. Let the update strength 1.052 ≤ 𝐹 ≤ 1.45 and the
success rate 𝑠 ≥ 22 be constants. With probability 1 − 𝑒−Ω (𝑛/log4 𝑛)

the self-adjusting (1, 𝜆) EA needs at least 𝑒Ω (𝑛/log
4 𝑛)

evaluations to

optimise OneMax.

The reason why the algorithm takes exponential time is that now
𝐹 1/𝑠 is small and𝜆 only increases slowly in unsuccessful generations,
whereas successful generations decrease 𝜆 by a much larger factor
of 𝐹 . This is detrimental during early parts of the run where it is
easy to find improvements and there are frequent improvements
that decrease 𝜆. When 𝜆 is small, there are frequent fallbacks, hence
the algorithm stays in a region with small values of 𝜆, where it finds
improvements with constant probability, but also has fallbacks with
constant probability. We show, using another potential function,
that it takes exponential time to escape from this equilibrium.

Definition 4.2. We define the potential functionℎ(𝑋𝑡 ) as
ℎ(𝑋𝑡 ) := 𝑓 (𝑥𝑡 ) + 2.1 log2𝐹 𝜆𝑡 .

While𝑔(𝑋𝑡 ) used a linear contribution of log𝐹 (𝜆𝑡 ), here we use
a convex function of log2

𝐹
(𝜆𝑡 ), so that decreases of 𝜆𝑡 have a larger

impact on the potential. We show that, in a given fitness interval,
the potentialℎ(𝑋𝑡 ) has a negative drift.

Lemma 4.3. Consider the self-adjusting (1, 𝜆) EA as in The-

orem 4.1. Then there is a constant 𝛿 > 0 that for every

0.9𝑛 + 2.1 log2 (4.5) < ℎ(𝑋𝑡 ) < 0.91𝑛,
E (ℎ(𝑋𝑡+1) − ℎ(𝑋𝑡 ) | 𝑋𝑡 ) ≤ −𝛿.

Proof sketch for Lemma 4.3. We abbreviate
Δℎ := E (ℎ(𝑋𝑡+1) − ℎ(𝑋𝑡 ) | 𝑋𝑡 ) and bound it by considering
the possible outcomes of a generation. The differences in the
𝜆-terms of ℎ(𝑋𝑡 ) in successful and unsuccessful generations,
respectively, are 2.1 log2

𝐹
(𝜆/𝐹 ) − 2.1 log2

𝐹
(𝜆) = −4.2 log𝐹 (𝜆) + 2.1

and 2.1 log2
𝐹
(𝜆𝐹 1/𝑠 ) − 2.1 log2

𝐹
(𝜆) = 4.2 log𝐹 (𝜆)

𝑠 + 2.1
𝑠 . We show that

Δℎ ≤
(
Δ+
𝑖,𝜆
− 4.2 log𝐹 (𝜆) + 2.1 −

4.2 log𝐹 𝜆
𝑠

− 2.1
𝑠2

)
𝑝+
𝑖,𝜆

+
4.2 log𝐹 𝜆

𝑠
+ 2.1

𝑠2
− 𝑝−

𝑖,𝜆
. (6)

Thenwe consider different ranges of 𝜆 values and show that in every
range the drift is a negative constant. Since we deal with small 𝜆, we
do account for rounding 𝜆 to its nearest integer in probability and
drift bounds. Values of the drift computed using Equation 6 and the
bounds from Lemma 2.2 are shown in Figure 1. For every value of 𝜆
in Figure 1, we used worst-case values for 𝐹 and 𝑠 to compute the
bound on Δℎ . The maximum is −0.002. □

Finally, with Lemma 4.3, we now prove Theorem 4.1.

Proof sketch of Theorem 4.1. By Lemma 4.3 there is an inter-
val of size Ω(𝑛) forℎ for which the drift is a negative constant and
by definition 𝑓 (𝑥𝑡 ) ≤ ℎ(𝑋𝑡 ). Therefore, to prove an exponential
runtime we apply the negative drift theorem with scaling [28] to
the potential function, showing that with the claimed probability

Figure 1: Bounds on Δℎ with amaximumof−0.002 for 𝜆 = 1.5.

we have ℎ(𝑋𝑡 ) ≤ 0.91𝑛 and thus 𝑓 (𝑥𝑡 ) ≤ 0.91𝑛. To meet the re-
quirements of the negative drift theorem we bound the possible
changes in the reward term by showing that with overwhelming
probability 𝜆 = 𝑂 (𝑛3) while optimising OneMax and for the fit-
ness we bound the tail of the number of flipping bits. Adding up
changes in the fitness component and the reward component, we
get Pr

(
|ℎ(𝑋𝑡+1) − ℎ(𝑋𝑡 ) | | 𝑋𝑡 ≥ 𝑗 · 20 log2 𝑛

)
≤ 𝑒−𝑗 for all 𝑗 ∈ N,

meeting the requirements of the negative drift theorem. □

5 DISCUSSIONANDCONCLUSIONS
We have shown that simple success-based rules, embedded in a
(1, 𝜆) EA, are able to optimise OneMax in 𝑂 (𝑛) generations and
𝑂 (𝑛 log𝑛) evaluations. The latter is best possible for any unary
unbiased black-box algorithm [9, 19].

However, this result depends crucially on the correct selection
of the success rate 𝑠 . The above holds for constant 0 < 𝑠 < 𝑒−1

𝑒
and, in sharp contrast, the time on OneMax becomes exponential
with overwhelming probability if 𝑠 ≥ 22. Then the algorithm stag-
nates in an equilibrium state at a linear distance to the optimum.
Simulations showed that, once 𝜆 grows large enough to escape from
the equilibrium, the algorithm is able to maintain large values of 𝜆
until the optimum is found. Hence, we observe the counterintuitive
effect that for too large values of 𝑠 , optimisation is harder when
the algorithm is far away from the optimum and becomes easier
when approaching the optimum. (To our knowledge, such an effect
was only reported before on HotTopic functions [21] and Dynamic
BinVal functions [20].)

Figure2:Averagenumberofgenerationsof theself-adjusting
(1, 𝜆) EA with 𝐹 = 1.5 in 100 runs for different 𝑛, normalised
and capped at 500𝑛 generations.

There is a gap between conditions 𝑠 < 𝑒−1
𝑒 and 𝑠 ≥ 22. Further

work isneeded toclose thisgap. Inpreliminaryexperiments (Figure2)
we found a sharp threshold at 𝑠 ≈ 3.4, indicating that the widely
used one-fifth rule (𝑠 = 4) is inefficient here, but other success rules
achieve optimal asymptotic runtime.
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