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A Coevolutionary process

Algorithm 4: Coevolutionary Process
1 Require: Population size λ ∈ N and search spaces X and Y.
2 Require: Initial populations P0 ∈ Xλ and Q0 ∈ Yλ.
3 for each generation number t ∈ N0 do
4 for each interaction number i ∈ [λ] do
5 Sample an interaction (x, y) ∼ D(Pt, Qt);
6 Set Pt+1(i) := x and Qt+1(i) := y;

B Helper Lemmas

Theorem 3 ([23]). Let X1, . . . , Xn be independent Poisson trials such that, for
1 ≤ i ≤ n, Pr [Xi = 1] = pi, where 0 < pi < 1. Then, for X :=

∑n
i=1Xi, and

any δ ∈ (0, 1),

Pr [X < (1− δ)E [X]] < exp

(
−δ

2E [X]

2

)
.

Lemma 5. Let a > 1, b > 1, 0 < x ≤ 1, 0 < y ≤ 1, 0 < c < 1, xy ≤ c. Let
f(x, y) = (a− (a− 1)x)(b− (b− 1)y). The minimum of f(x, y) with respect to x
and y is

1. (1− c)(b− 1) + 1 if a ≥ b
2. (1− c)(a− 1) + 1 if b ≥ a

Proof. Note that (a− (a−1)x)(b− (b−1)y) = ab(1− (a−1)x/a)(1− (b−1)y/b).
Therefore, the minimum of (a− (a− 1)x)(b− (b− 1)y) is attained by the same x
and y as (1− (a− 1)x/a)(1− (b− 1)y/b), since a, b > 1. Let α := (a− 1)/a > 0
and β := (b− 1)/b > 0.

Now we show that the minimum is attained with xy = c by contradiction.
Assume that the minimum is attained for some x0, y0 with x0y0 < c. For any x1
y1 with x1y1 = c there exists an ε > 0 such that either x1 ≥ x0 + ε, y1 ≥ y0 + ε
or both. For simplicity lets assume that there exist a x1 = x0 + ε and y0 = y1.
Then,

(1− αx1)(1− βy1) = (1− α(x0 + ε))(1− βy1) < (1− α(x0))(1− βy0),

which contradicts the statement that the minimum is attained for x0y0 < c.
Since the minimum is attained by xy = c then x, y ≥ c and

argmin
x,y

{(1− αx)(1− βy)} = argmin
x,y

{1− αx− βy + cαβ} = argmax
x,y

{αx+ βy}.
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Now, we find the extrema of αx+ βy. Given that xy = c then y = c/x and

αx+ βy = αx+
βc

x
.

Let g(x) = αx + βc
x , then g′(x) = α − βc

x2 and the extrema are found where

g′(x) = 0. These are attained for x = ±
√

βc
α . x ≥ 0 by assumption, therefore

the only extremum is x =
√

βc
α and since g′′(x) = 2βc

x3 > 0 it is a minimum.
Hence, the maximum of αx+ βy is either x = 1 and y = c or x = c and y = 1.

Substituting these values of x and y in the original function f(x, y) = (a −
(a− 1)x)(b− (b− 1)y) we can see that if a > b, x = 1 y = c gives the minimum
and x = c y = 1 gives the minimum otherwise.

C Omitted Lemmas and Proofs

This appendix contains the lemmas and proofs omitted from the main part.

Theorem 4 (Adapted from [18]). Given subsets Aj ⊆ X , Bj ⊆ Y for
j ∈ [m], define T := min{t | (Pt ×Qt) ∩ (Am × Bm) ̸= ∅}, where for all t ∈ N,
Pt ∈ X λ and Qt ∈ Yλ are the populations of Algorithm 4 in generation t. If there
exist z1, . . . , zm−1, δ ∈ (0, 1], and γ0 ∈ (0, 1) such that for initial populations
|(P0 × Q0) ∩ (A1 × B1)| ≥ γ0λ

2, and for any populations P ∈ X λ and Q ∈ Yλ
with “current level” j := max{i ∈ [m] | |(P ×Q) ∩ (Ai ×Bi)| ≥ γ0λ2}

(G1) if j ∈ [m− 1] and (x, y) ∼ D(P,Q) Pr [x ∈ Aj+1] Pr [y ∈ Bj+1] ≥ zj ,
(G2a) if j ∈ [m − 2] and all γ ∈ (0, γ0) if |(P × Q) ∩ (Aj+1 × Bj+1)| ≥ γλ2,

then for (x, y) ∼ D(P,Q), Pr [x ∈ Aj+1] Pr [y ∈ Bj+1] ≥ (1 + δ)γ,
(G2b) if j ∈ [m− 1] and (x, y) ∼ D(P,Q), Pr [x ∈ Aj ] Pr [y ∈ Bj ] ≥ (1 + δ)γ0,
(G3) and the population size λ ∈ N satisfies for a sufficiently large constant c′,

where z∗ := mini∈[m−1] zi, λ ≥ c′ log(m/z∗),

then for a constant c′′ > 0 and any constant r > 0,

Pr

[
T ≥ c′′

(
λ2m+

m−1∑
i=1

1/zi

)]
≤ 1/r.

If condition (G2a) is met for j = m − 1, then for T ′ := min{t | (Pt × Qt) ∩
(Am ×Bm) ≥ γ0λ2}, a constant c′′ > 0 and any constant r > 0,

Pr

[
T ′ ≥ c′′

(
λ2m+

m−1∑
i=1

1/zi

)]
≤ 1/r.

To prove Theorem 4 we need a slightly adapted proof of the level-based
theorem shown in the supplementary material of [18].
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The last part of the original proof of the level-based theorem considers mul-
tiple phases. Each phase starts from an arbitrary configuration within the search
space X×Y and ends after a fixed number of generations with a certain probabil-
ity of not finding the optimum within the phase. The overall runtime is obtained
by computing the expected number of phases (+1).

In our case we assume A1 ×B1 ̸= X ×Y therefore if the first phase does not
find the optimum we cannot restart the analysis from an arbitrary configuration.
Therefore, in Theorem 4 we state the runtime as a tail-bound rather than an
upper bound on the expected runtime.

In addition, the original proof in the supplementary material of [18] assumed
that (G2a) is met for j = m − 1, since it only bounded the first time ((Pt ×
Qt) ∩ (Am × Bm)) ̸= ∅. If this is not assumed but instead is a condition of the
theorem then we can also show the first time ((Pt ×Qt) ∩ (Am ×Bm)) ≥ γ0λ2.

Finally, in [18] the level-based theorem assumes that each generation uses
only λ evaluations. Theorem 4 drops this assumption and only bounds the num-
ber of generations.

Lemma 1. Let r1 ≤ βn, βn ≤ r2, s2 ≤ αn, αn ≤ s1 with βn − r1 = r2 − βn
and αn − s2 = s1 − αn. Let ε > 0 be a constant. Let x and y be the offspring
created in Lines 15 and 20 of Algorithm 1 with k = ℓ = 2, and r(0) be the
probability of not flipping a bit during mutation. If v1, v3, w1, w3 ≥ 1 − 1√

2
+

ε and there exist constants δ, δ′ > 0 such that 1+δ

1+(1−δ′)(1+
√
2)ε
≤ r2(0) ≤ 1,

then, for all γ ∈ (0, δ′/2] any population with P ∈ X λ and Q ∈ Yλ with
|(P ×Q) ∩ (A(r1, r2)×B(s2, s1))| ≥ γλ2 guarantees that

Pr [x ∈ A(r1, r2)] Pr [y ∈ B(s2, s1))] ≥ (1 + δ)γ.

Proof (Proof of Lemma 1). First, we compute the probability that the algorithm
selects a parent from Pt in the level A(r1, r2) and later deal with B(s2, s1). By
Lemma 3.2 in [12] the following conditions (probabilities in parenthesis) result
in selecting a parent from Pt in the level A(r1, r2):

– Both individuals are sampled in R1 (p2).
– The two individuals are sampled in R0 and R1 (2p0p). Additionally:
• The two competitors have ∥y∥ < αn and ∥y∥ > αn (2w1w3).
• The two competitors have ∥y∥ = αn and ∥y∥ > αn (2w2w3).
• Both competitors have ∥y∥ > αn (w2

3).
– The two individuals are sampled in R1 and R2 (2p(1−p−p0)). Additionally:
• The two competitors have ∥y∥ < αn and ∥y∥ = αn (2w1w2).
• The two competitors have ∥y∥ < αn and ∥y∥ > αn (2w1w3).
• Both competitors have ∥y∥ < αn (w2

1).

We note that we omitted some conditions, but since we are interested in a lower
bound for the probability of selecting a parent in level A(r1, r2) this is not a
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problem. Putting everything together we obtain:

psel(A(r1, r2)) ≥ p2 + 2p0p
(
2w1w3 + w2

3 + 2w2w3

)
+ 2p(1− p− p0)

(
w2

1 + 2w1w2 + 2w1w3

)
= p2 + 2p0p (w3(2w1 + 2w2 + w3))

+ 2p(1− p− p0) (w1(w1 + 2w2 + 2w3))

= p2 + 2p0p (w3(1 + w1 + w2))

+ 2p(1− p− p0) (w1(1 + w2 + w3))

= p (p+ 2p0w3(2− w3) + 2(1− p− p0)w1(2− w1))

= p
(
p+ p0

(
4w3 − 2w2

3

)
+ (1− p− p0)

(
4w1 − 2w2

1

))
By assumption both w1 ≥ 1− 1√

2
+ ε and w3 ≥ 1− 1√

2
+ ε, therefore

psel(A(r1, r2))

≥ p

(
p+ (p0 + (1− p− p0))

(
4

(
1− 1√

2
+ ε

)
− 2

(
1− 1√

2
+ ε

)2
))

= p
(
p+ (1− p)

(
1 + 2

√
2ε− 2ε2

))
We note that 0 < ε ≤ 1√

2
− 1

2 , otherwise w1 +w3 > 1. Then (
√
2− 1)ε ≥ 2ε2 for

all possible ε and

psel(A(r1, r2)) ≥ p
(
p+ (1− p)

(
1 +

(
1 +
√
2
)
ε
))

Let κ := 1 +
(
1 +
√
2
)
ε for simplicity.

psel(A(r1, r2)) ≥ p (p+ κ(1− p)) = p (κ− (κ− 1)p)

Using the same arguments for psel(B(s2, s1)) we can obtain

psel(B(s2, s1)) ≥ q (κ− (κ− 1)q) .

Now,

Pr [x ∈ A(r1, r2)] Pr [y ∈ B(s2, s1))]

≥ psel(A(r1, r2))psel(B(s2, s1))r
2
(0)

≥ pq (κ− (κ− 1)p) (κ− (κ− 1)q) r2(0)

Now assume that 0 < pq ≤ δ′, we will deal with pq > δ′ later. Under this
restriction by Lemma 5 the minimum value of (κ− (κ− 1)p) (κ− (κ− 1)q) is
1 + (1− δ′)(κ− 1), hence

Pr [x ∈ A(r1, r2)] Pr [y ∈ B(s2, s1))]

≥ psel(A(r1, r2))psel(B(s2, s1))r
2
(0)

≥ pq (1 + (1− δ′)(κ− 1)) r2(0)
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By the assumptions on r2(0) and pq ≥ γ this is at least (1+δ)γ, proving the claim
for 0 < pq ≤ δ′.

We note that 1 + (1 − δ′)(κ − 1) ≥ 1 because κ > 1 and δ′ < 1 to fulfill
the requirement for r2(0) ≤ 1. If pq > δ′ we pessimistically assume that 1 +

(1 − δ′)(κ − 1) = 1. We note that since pq ≥ γ and γ ∈ (0, δ′/2] there is an
δ′ − δ′/2 < ε′ ≤ 1− γ such that pq = γ + ε′. Then,

Pr [x ∈ A(r1, r2)] Pr [y ∈ B(s2, s1))] ≥ pqr2(0)

= γ

(
1 +

ε′

γ

)
r2(0)

≥ γ
(
1 +

δ′ − δ′/2
δ′/2

)
r2(0)

= 2γr2(0).

As before, by the assumptions on r2(0) this is at least (1 + δ)γ.

C.1 Lemmas and proofs of Section 5

In the following lemmas we consider a different type of levels than in Lemma 1
where the restrictions on the archive are more lenient and the algorithm would
have the opportunity to encounter a diverse set of solutions to build a good
archive.

The new levels consider the whole search space for the prey (B(0, n)) and
for the predator all solutions with less than r2 1-bits (A(0, r2)). The idea is that
an algorithm that starts at level A(0, n) and ends at a level A(0, βn− 1) would
encounter individuals in X that have less than βn 1-bits and more than βn
1-bits, allowing it to build a good predator archive V . Figure 5 (b) shows these
levels.

(a) (b) (c)

Fig. 5: Levels for Lemma 1 (a), Lemma 6 (b) and Lemma 7 (c) on Bilinear.

Lemma 6 shows that for these levels there are no conditions for the predator
archive V and the conditions for the prey archive W and r(0) are easier to meet
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than in Lemma 1. For example, for w1 = w2 = 1/2 r(0) ≥ 0.58 meets the
conditions.

Lemma 6. Let x and y be the offspring created in Lines 15 and 20 of Algo-
rithm 1 with k = ℓ = 2. If there are constants δ, δ′ > 0 such that any of the
following conditions hold:

1. r1 = 0, r2 ≥ 0, s2 = 0, s1 = n, 1+δ

(1−δ′)2(w2
1+w1w2+w2

2/2)
≤ r(0) ≤ 1 and

(a) w1 + w2 = 1,
(b) w2

1 > 1/2, or
(c) w2

1 ≤ 1/2 and w2 >
√
1− w2

1 − w1,
2. r1 = 0, r2 ≥ βn, s2 = 0, s1 = n, 1+δ

(1−δ′)2(w2
1+2w1w2+w2

2/2)
≤ r(0) ≤ 1 and

(a) w1 + w2 = 1,
(b) w2

1 > 1/2, or
(c) w2

1 ≤ 1/2 and w2 >
√
2w2

1 + 1− 2w1 ≥ 1−
√
2w1

Then, for all γ ∈ (0, δ′/2] any population with P ∈ X λ and Q ∈ Yλ with
|(P ×Q) ∩ (A(r1, r2)×B(s2, s1))| ≥ γλ2

Pr [x ∈ A(r1, r2)] Pr [y ∈ B(s2, s1))] ≥ (1 + δ)γ

We note that Lemma 6 focuses on levels that cover the whole search space for
the population Q and all bit-strings with at most r2 1-bits for the population P .
Equivalent conditions can be proved if we rotate the levels in the search space.
That is if we consider all bit-strings with at least r2 1-bits for the population
P , or consider all the search space for the population P and all bit-strings with
at most/least s1 1-bits for the population Q. Due to their similarities (in their
conditions and proofs) we omit these.

Proof (Proof of Lemma 6). Since s2 = 0 and s1 = n then B(s2, s1) = {0, 1}n
and the probability Pr [y ∈ B(s2, s1)] = 1. Therefore, we only need to bound
Pr [x ∈ A(r1, r2)] for both Conditions (1) and (2). We start by proving the state-
ment for Condition (1). By Lemma 3.2 in [12] the following conditions (proba-
bilities in parenthesis) result in selecting a parent from Pt in the level A(r1, r2):

– Both individuals are sampled in R1 (p2).
– The two individuals are sampled in R1 and R2 (2p(1−p−p0)). Additionally:
• Both competitors have ∥y∥ < αn (w2

1).
• The two competitors have ∥y∥ < αn and ∥y∥ = αn and the individual

in R1 is chosen u. a. r. in line 14 (w1w2).
• Both competitors have ∥y∥ < αn and the individual in R1 is chosen

u. a. r. in line 14 (w2
2/2).

Therefore,

psel(A(r1, r2)) ≥ p2 + 2p(1− p− p0)
(
w2

1 + w1w2 +
w2

2

2

)
= p

(
p+ 2(1− p)

(
w2

1 + w1w2 +
w2

2

2

))
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Let W := w2
1+w1w2+

w2
2

2 and recall that Pr [x ∈ A(r1, r2)] ≥ psel(A(r1, r2))r(0),
therefore,

Pr [x ∈ A(r1, r2)] ≥ p (p+ 2W (1− p)) r(0)

Now assume that 0 < p ≤ δ′, we will deal with p > δ′ later. Thanks to the
Conditions 1a, 1b or 1c, 2W−1 > 0. Noting that p+2W (1−p) = 2W−(2W−1)p,
it is clear that the minimum is attained for p = δ′. Then,

Pr [x ∈ A(r1, r2)] ≥ p (δ′ + 2W (1− δ′)) r(0)
≥ p (2W (1− δ′)) r(0)

By the assumptions on r(0) and p ≥ γ this is at least (1 + δ)γ.
For p > δ′ we note that since p ≥ γ and γ ∈ (0, δ′/2] there is a δ′ − δ′/2 <

ε′ ≤ 1− γ such that p = γ + ε′. Then,

Pr [x ∈ A(r1, r2)] Pr [y ∈ B(s2, s1))] ≥ pr(0)

= γ

(
1 +

ε′

γ

)
r(0)

≥ γ
(
1 +

δ′ − δ′/2
δ′/2

)
r(0)

= 2γr(0).

As before, by the assumptions on r(0) this is at least (1 + δ)γ.
To show the statement for Condition (2) we note that since r2 ≥ βn then the

algorithm always selects a parent in A(r1, r2) if the two individuals are sampled
in R1 and R2 and the two competitors have ∥y∥ < αn and ∥y∥ = αn. Hence,

psel(A(r1, r2)) ≥ p2 + 2p(1− p− p0)
(
w2

1 + 2w1w2 +
w2

2

2

)
= p

(
p+ 2(1− p)

(
w2

1 + 2w1w2 +
w2

2

2

))
Using the same arguments as before, but using

r(0) ≥
1 + δ

(1− δ′)2 (w2
1 + 2w1w2 + w2

2/2)
,

we obtain the claimed results for Condition (2).

The previous sequence of levels were meant to allow Algorithm 1 build a
diverse predator archive V . Once this is achieved now the same process needs to
happen for the prey archiveW . Since we now assume that the predator archive V
is diverse, the prey population Q should move towards the maximin-optima, that
is the solutions will tend towards solutions with αn 1-bits. Therefore, the levels
consider the whole search space for the predator (A(0, n)) and for the prey the
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level include all solutions around the optima (A(s1, s2) with αn− s2 = s1−αn)
(see Figure 5 (c)).

Note that Lemma 7 also considers levels for the predator population P that
are not the whole search space. Although we do not need them in the following
proofs, we leave this as this extension is not difficult to prove and may be of
interest.

Lemma 7. Let x and y be the offspring created in Lines 15 and 20 of Algo-
rithm 1 with k = ℓ = 2. If there are constants ε, δ, δ′ > 0 such that any of the
following conditions hold:

1. r1 = 0, r2 ≥ 0, s2 ≤ αn, s1 ≥ αn with αn− s2 = s1 − αn, v1 ≥ 1− 1√
2
+ ε,

v3 ≥ 1 − 1√
2
+ ε, max

 1+δ
2 , 1+δ

1+(1−δ′)min

{
2

(
w2

1+w1w2+
w2

2
2

)
−1,(1+

√
2)ε

}
 ≤

r2(0) ≤ 1 and
(a) w1 + w2 = 1,
(b) w2

1 > 1/2, or
(c) w2

1 ≤ 1/2 and w2 >
√
1− w2

1 − w1

2. r1 = 0, r2 ≥ βn, s2 ≤ αn, s1 ≥ αn with αn− s2 = s1−αn, v1 ≥ 1− 1√
2
+ ε,

v3 ≥ 1 − 1√
2
+ ε, max

 1+δ
2 , 1+δ

1+(1−δ′)min

{
2

(
w2

1+2w1w2+
w2

2
2

)
−1,(1+

√
2)ε

}
 ≤

r2(0) ≤ 1 and
(a) w1 + w2 = 1 or
(b) w2

1 > 1/2 or
(c) w2

1 ≤ 1/2 and w2 >
√
2w2

1 + 1− 2w1 ≥ 1−
√
2w1

Then, for all γ ∈ (0, δ′/2] any population with P ∈ X λ and Q ∈ Yλ with
|(P ×Q) ∩ (A(r1, r2)×B(s2, s1))| ≥ γλ2

Pr [x ∈ A(r1, r2)] Pr [y ∈ B(s2, s1))] ≥ (1 + δ)γ.

As in Lemma 6, we note that the results of Lemma 7 can be proved for levels
rotated in the search space, but we omit these here to avoid repetitive conditions.

Proof (Proof of Lemma 7). Given that the conditions in the Lemma are a com-
bination of the conditions of Lemmas 1 and 6, this proof follows their proofs
closely. We start by proving the statement for Condition (1).

Let W := w2
1 + w1w2 +

w2
2

2 . From the proof of Lemma 6 the probability of
creating an offspring in A(r1, r2) is:

Pr [x ∈ A(r1, r2)] ≥ p (p+ 2W (1− p)) r(0)

Similarly, from the proof of Lemma 1 the probability of creating an offspring in
B(s2, s1) is:

Pr [y ∈ B(s2, s1)] ≥ q
(
1 +

(
1 +
√
2
)
ε(1− q)

)
r(0).
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Then,

Pr [x ∈ A(r1, r2)] Pr [y ∈ B(s2, s1))]

≥ pq (p+ 2W (1− p))
(
1 +

(
1 +
√
2
)
ε(1− q)

)
r2(0)

= pq (2W − (2W − 1)p))
(
1 +

(
1 +
√
2
)
ε−

(
1 +
√
2
)
εq)
)
r2(0).

Thanks to the Conditions 1a, 1b or 1c, 2W > 1. Now assume that 0 < pq ≤ δ′,
we will deal with pq > δ′ later. By Lemma 5 with a = 2W , b = 1 +

(
1 +
√
2
)
ε

and c = δ′ we obtain that

Pr [x ∈ A(r1, r2)] Pr [y ∈ B(s2, s1))]

≥ pqr2(0)
(
1 + (1− δ′)min

{
2W − 1,

(
1 +
√
2
)
ε
})

.

By the assumptions on r2(0) and pq ≥ γ this is at least (1 + δ)γ.
For pq > δ′ we note that since pq ≥ γ and γ ∈ (0, δ′/2] there is an δ′−δ′/2 <

ε′ ≤ 1− γ such that pq = γ + ε′. Then,

Pr [x ∈ A(r1, r2)] Pr [y ∈ B(s2, s1))] ≥ pqr2(0)

= γ

(
1 +

ε′

γ

)
r2(0)

≥ γ
(
1 +

δ′ − δ′/2
δ′/2

)
r2(0)

= 2γr2(0).

As before, by the assumptions on r2(0) this is at least (1 + δ)γ.

For Condition (2) we use W := w2
1 + 2w1w2 +

w2
2

2 and the rest of the proof
is the same as before.

Lemma 2. Let |V | and |W | be the size of the archives. Then, Algorithm 3 uses
at most (|V |+ λ)λ+ (|W |+ λ)λ evaluations to update the archive.

Proof (Proof of Lemma 2). Algorithm 3 needs to check that for every solution in
the current populations P there is at least one solution in V that equally ranks
every solution in Q. Therefore, in the worst case the algorithm computes g(x, y)
for all (x, y) ∈ (V ∪ P )×Q. This amounts to (∥V ∥+ λ)λ evaluations.

Similarly, for Q and W in the worst case it needs (∥W∥+ λ)λ. Adding both
completes the proof.

Theorem 1. Let α, β ∈ (0, 1). Consider Algorithm 1 using Algorithm 3 as
archive update scheme on Bilinearα,β. Define OPT := {(x, y) ∈ (X × Y) |
∥x∥ = βn ∧ ∥y∥ = αn} and T := min{λ2t | Pt ×Qt ∩ OPT ̸= ∅}. Then if there
are constants δ, δ′ > 0 such that the probability r(0) of the mutation operator is
at least

max

{
8(1 + δ)

14(1− δ′)
,

√
6(1 + δ)

6 + (1− δ′)
(
2−
√
2
)} ,
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r(1) > 0 is constant and for a sufficiently large constant c, c log n ≤ λ ∈ poly (n)
then, it holds that E[T ] = O(λ4n).

Proof (Proof of Theorem 1). We divide the proof in three distinct phases and
we define the runtime of each phase as T (i) for i ∈ {1, 2, 3}. Phase 1 starts at
the beginning of the optimisation and ends the first generation the archive V
contains two solutions x1, x2 with ∥x1∥ < βn and ∥x2∥ > βn or the archive W
contains two solutions y1, y2 with ∥y1∥ < αn and ∥y2∥ > αn. Phase 2 ends when
both the archive V contains two solutions x1, x2 with ∥x1∥ < βn and ∥x2∥ > βn
and the archive W contains two solutions y1, y2 with ∥y1∥ < αn and ∥y2∥ > αn.
Finally Phase 3 ends when the algorithm creates a solution in OPT.

We note that if there exists a solution x with ∥x∥ < βn, ∥x∥ = βn or
∥x∥ > βn in Pt then for all t∗ ≥ t the archive Vt∗ contains a solution x with
∥x∥ < βn, ∥x∥ = βn or ∥x∥ > βn respectively. The same is true for the archive
Wt∗ with solutions y with ∥y∥ < αn, ∥y∥ = αn or ∥y∥ > αn.

We start by computing the expected runtime of Phase 1 (T (1)). We assume
that all solutions are in one quadrant of the search space, otherwise, V0 and/or
W0 would meet the conditions to end the phase and T (1) = 1. Due to the
symmetry of the search space without loss of generality we also assume that all
solutions are in the third quadrant of the search space. Then, V0 contains exactly
one solution x with ∥x∥ > βn and W0 contains a solution y with ∥y∥ ≤ αn.
If all solutions y ∈ Q0 have ∥y∥ = αn, then in expectation we need to wait
t∗ := 1 − (1 − r(1))

λ = O(1) generations until a solution with ∥y∥ > αn or
∥y∥ < αn is generated by mutation and then Wt∗ would contain a solution y
with ∥y∥ < αn or ∥y∥ > αn. Again by the symmetry of the search space we can
assume that mutation creates y with only ∥y∥ < αn.

Since, for all 0 ≤ t < T (1) Wt does not contain a solution y with ∥y∥ > αn.
Then w1 ≥ 1/2, w1 + w2 = 1, resulting in w2

1 + 2w1w2 + w2
2/2 ≥ 7/8 and

1 + δ

(1− δ′)2 (w2
1 + 2w1w2 + w2

2/2)
≤ 8(1 + δ)

14(1− δ′)
. (10)

We aim to use the Level-Based Theorem to show that the algorithm will find
a solution in the fourth quadrant, which in turn would end Phase 1. We do not
consider the event that the algorithm creates a pair of solutions (x, y) ∈ Pt×Qt
in the first or second quadrant. Since we want an upper bound of E

[
T (1)

]
and

this event can only reduce T (1) this does not affect our computations.
Let A(1)

i+1 := A(0, n− i) and B(1)
i+1 := B(0, n) for i ∈ [0, n(1− β) + 1]. We will

use the sequence of levels (A
(1)
1 × B(1)

1 ), . . . , (A
(1)
n(1−β)+2 × B

(1)
n(1−β)+2). By the

assumptions on r(0), Equation 10 and the discussion above showing that w! ≥ 1
and w1 + w2 = 1 the conditions on Lemma 6 hold for all γ ≤ δ′/2 on all levels
(A

(1)
i+1 × B

(1)
i+1) with i ∈ [0, n(1 − β)]. Therefore, conditions (G2a) and (G2b) of

the Level-Based Theorem are met with γ0 = δ′/2.
A sufficient condition to create a solution in the next level (A(1)

j+1 ×B
(1)
j+1) is

to select a solution in the current level (A(1)
j × B

(1)
j ) and flip exactly one 1-bit.
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The probability of selecting a solution in the current level (A(1)
j ×B

(1)
j ) is at least

γ0 = δ′/2 by definition and the probability of flipping exactly one 1-bit is at least
r(1)(n−j+1)/n. Therefore, condition (G1) is met with zj = δ′r(1)(n−j+1)/(2n).
We remark that if the algorithm starts in a different quadrant this probabilities
and the number of levels m might be different. To account for this let ψ =
max{β, 1 − β, α, 1 − α}. By the assumptions on λ condition (G3) of the Level-
Based Theorem is met. Accounting for the initial t∗ = O(1) generations and
O(λ2) evaluations that may be needed to have a solution y with ∥y∥ < αn in
Wt∗ , then for some constant c′′ > 1

E
[
T (1)

]
≤ c′′λ2

(ψn+ 1)λ2 +
2

δ′r(1)

ψn+1∑
j=1

n

n− j + 1


≤ c′′λ2

(
nλ2 +

2n

δ′r(1)

n∑
i=1

1

i

)

≤ c′′λ2
(
nλ2 +

2n

δ′r(1)
(1 + lnn)

)
.

We note that the level-based theorem in [18] assumes that each generation uses
O(λ) evaluations each generation, but this algorithm uses λ2, this is accounted
here (and in following applications of the theorem) with the λ2 after c′′.

Starting Phase 2 we assume that the archive V has at least one solution x
with x < βn and one with x > βn and the archive W does not have a solution y
with y > αn. Hence, v1, v3 ≥ 1/3 ≥ 1− 1√

2
+ ε for some ε ≥ 1√

2
− 2

3 , w1 ≥ 1/2,
w1 + w2 = 1 and

1 + δ

1 + (1− δ′)min
{
2
(
w2

1 + 2w1w2 +
w2

2

2

)
− 1,

(
1 +
√
2
)
ε
}

≤ 1 + δ

1 + (1− δ′)
(
1 +
√
2
)
ε

≤ 6(1 + δ)

6 + (1− δ′)
(
2−
√
2
)

Due to the symmetry of the search space the previous and following argu-
ments also hold if Phase 2 starts with any other combination of archive popula-
tions.

As in Phase 1 we aim to use the Level-Based Theorem, but with the sequence
of levels (A

(2)
1 × B

(2)
1 ), . . . (A

(2)
m × B(2)

m ) with m = n + 1. We define A(2)
n+1−i :=

A(0, n) for i ∈ [0, n], andB(2)
m := B(αn+1, αn+1) andB(2)

n+1−i := B(max{0, αn−
i},min{n, αn + i}) for i ∈ [1, n]. This sequence of levels starts with the whole
search space and ends with a level where ∥y∥ = αn+ 1.

By the assumptions on r(0) the conditions on Lemma 7 hold for all γ ≤ δ′/2
on all levels (A

(2)
n+1−i ×B

(2)
n+1−i) with i ∈ [1, n]. Therefore, conditions (G2a) and

(G2b) of the Level-Based Theorem are met with γ0 = δ′/2.
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Similar to Phase 1 we can use zj = δ′r(1)(n− j+1)/(2n) for condition (G1),
and by the assumptions on λ condition (G3) of the Level-Based Theorem is met.
Then for some constant c′′ > 1

E
[
T (2)

]
≤ c′′λ2

(
nλ2 +

2n(1 + lnn)

δ′r(1)

)
.

Finally for Phase 3 by definition the archive V has at least one solution x
with x < βn and one with x > βn and the archive W has at least one solution
y with y < αn and one with y > αn. Hence, v1, v3, w1, w3 ≥ 1/3, and

1 + δ

1 + (1− δ′)
(
1 +
√
2
)
ε
≤ 6(1 + δ)

6 + (1− δ′)
(
2−
√
2
)

As before we will use the Level-Based Theorem with the levels

A
(0)
2n+1−i(0, n) B

(0)
2n+1−i(max {0, αn− i+ n},min {n, αn+ i− n}),

for i ∈ [n, 2n] and

A
(0)
2n+1−i(max {0, βn− i},min {n, βn+ i}) B

(0)
2n+1−i(αn, αn).

for i ∈ [0, n− 1].
By Lemma 1 and the assumptions on r(0) (G2a) and (G2b) are met. Dif-

ferent from previous phases the algorithm not only needs to flip the correct
bit from one population, but also do not flip a bit from the other, therefore,
zj = zj+n = δ′r(0)r(1)(n− j+1)/(2n) meets condition (G1) for all j ∈ [1,m]. By
the assumptions on λ condition (G3) of the Level-Based Theorem is met. Hence,
for some constant c′′ > 1

E
[
T (3)

]
≤ c′′λ2

(2n+ 1)λ2 +
2

δ′r(0)r(1)

n+1∑
j=1

2n

n− j + 1


≤ c′′λ2

(
(2n+ 1)λ2 +

4n

δ′r(0)r(1)

n∑
i=1

1

i

)

≤ c′′λ2
(
(2n+ 1)λ2 +

4n(1 + log n)

δ′r(0)r(1)

)
.

Adding the runtime of the three phases and noting that λ = Ω(log n) and
δ, δ′, r(1), r(0) > 0 are constants we obtain

E[T ] = E
[
T (1)

]
+ E

[
T (2)

]
+ E

[
T (3)

]
= O(λ4n).

C.2 Lemmas and proofs of Section 6

Lemma 3. Consider Algorithm 2 with x1, x2, y1, y2 from line 8 and x′ from
line 13. Let ε ∈ (0, 1/2) be any constant. Let A ⊂ X be any subset such that
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∀y1, y2 ∈ Y,∀x1 ∈ A,∀x2 ∈ X \A, g(x1, y1) ≥ g(x1, y2) if and only if g(x2, y1) ≤
g(x2, y2), and for all x′ ∈ X \ A, Prx∼mutx(x′)(x ∈ A) ≤ ε/6. For all t ≥ 0, if
|Pt ∩A| ≤ λ

2 (1 + ε), then Pr
[
|Pt+1 ∩A| > λ

2 (1 + ε)
]
= e−Ω(λ).

Proof (Proof of Lemma 3). Since each new predator x in generation t + 1 is
sampled independently and identically from the same distribution, it suffices by
a Chernoff bound to prove that Pr(x ∈ A) ≤ (1/2)(1 + cε) for some constant
c ∈ (0, 1).

First, we upper bound the probability that the selected search point x′ be-
longs to A. The algorithm selects x′ ∈ A if both x1 and x2 are sampled in A, x1
is sampled in A but x2 and x3 are not, or if x2 is sampled in A but x1 and x3
are not. Let γ := 1

λ |Pt ∩A| ≤
1
2 (1 + ε). Then

Pr [x′ ∈ A] = Pr [x1 ∈ A ∧ x2 ∈ A] + Pr [x1 ∈ A ∧ x2 ̸∈ A ∧ x3 ̸∈ A]
+ Pr [x1 ̸∈ A ∧ x2 ∈ A ∧ x3 ̸∈ A]

= γ2 + 2γ(1− γ)2

= γ(2− γ(3− 2γ)) =: β(γ)

Note that since the function β is monotonically increasing in γ, and γ ≤ (1/2)(1+
ε), we get

Pr [x′ ∈ A] ≤ 1

2
(1 + ε)

(
2− 1

2
(1 + ε)(3− (1 + ε))

)
=

1

2
(1 + ε)

(
2− 1

2
(1 + ε)(2− ε)

)
=

1

2
(1 + ε)

(
1− ε

2
+
ε2

2

)
=

1

2

(
1 +

ε(1 + ε2)

2

)
<

1

2

(
1 +

5ε

8

)
,

where the last inequality follows because ε < 1/2. By the law of total probability,

Pr [x ∈ A] = Pr [x′ ∈ A] Pr [x ∈ A | x′ ∈ A] + Pr [x′ ̸∈ A] Pr [x ∈ A | x′ ̸∈ A]
≤ Pr [x′ ∈ A] + Pr [x ∈ A | x′ ̸∈ A]

≤ 1

2

(
1 +

5ε

8

)
+
ε

6

=
1

2

(
1 +

23ε

24

)
,

hence the statement follows by choosing the constant c := 23/24.

Lemma 4. Consider Algorithm 2 with x1, x2, y1, y2 from line 8 and x′ from
line 13. Let ε ∈ (0, 1/2) be any constant. Let A ⊂ X be any subset such that
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∀y1, y2 ∈ Y,∀x1 ∈ A,∀x2 ∈ X \A, g(x1, y1) ≥ g(x1, y2) if and only if g(x2, y1) ≤
g(x2, y2), and for all x′ ∈ A, Prx∼mutx(x′)(x ∈ A) ≥ 1− ε

4 . For all t ∈ N, define
Xt := |Pt∩A|. Then, for all t ≥ 0, Pr

[
Xt+1 ≥ (1 + ε

16 )min{Xt,
λ
2 (1− ε)} | Xt

]
≥

1− e−Ω(Xt).

Proof (Proof of Lemma 4). Let γ := Xt

λ , and γ′ := min{γ, 12 (1− ε)}. Since each
new predator x in generation t + 1 is sampled independently and identically
from the same distribution, it suffices by a Chernoff bound to prove that Pr(x ∈
A) ≥ γ′(1+ ε

8 ). More precisely, Xt+1 is stochastically dominated by a binomially
distributed random variable X ∼ B(λ, γ′(1 + ε

8 )) to which we apply Theorem 3
with parameter δ := ε

16+2ε .
First, we lower bound the probability that the selected search point x′ belongs

to A, reusing the function β defined in the proof of Lemma 3. In the case γ′ = γ,
we have

Pr [x′ ∈ A] = γ(2− γ(3− 2γ))

noting that β(γ)/γ is monotonically decreasing in γ ∈ (0, 3/4) and γ ≤ 1
2 (1− ε)

≥ γ
(
2− 1

2
(1− ε)(3− (1− ε))

)
= γ

(
1 +

ε+ ε2

2

)
> γ

(
1 +

ε

2

)
= γ′

(
1 +

ε

2

)
.

In the case where γ′ < γ,

Pr [x′ ∈ A] = γ(2− γ(3− 2γ))

noting that β(γ) is monotonically increasing in γ and γ > γ′

≥ γ′(2− γ′(3− 2γ′))

noting that β(γ′)/γ′ is monotonically decreasing in γ′ gives as above

≥ γ′
(
2− 1

2
(1− ε)(3− (1− ε)

)
= γ′

(
1 +

ε+ ε2

2

)
> γ′

(
1 +

ε

2

)
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By the law of total probability,

Pr [x ∈ A] = Pr [x′ ∈ A] Pr [x ∈ A | x′ ∈ A] + Pr [x′ ̸∈ A] Pr [x ∈ A | x′ ̸∈ A]
≥ Pr [x′ ∈ A] Pr [x ∈ A | x′ ∈ A]

≥ γ′
(
1 +

ε

2

)(
1− ε

4

)
= γ′

(
1 +

ε

4

(
1− ε

2

))
≥ γ′

(
1 +

ε

8

)
.

For ease of notation, we will introduce the following random variables Xt :=
|Pt ∩R0| and Yt := |Qt ∩ S0|.

Phase 1 Phase 1 starts in generation t0 with the assumptions in Eq. (2). (Recall
that a symmetry argument can be applied if this assumption does not hold). In a
successful Phase 1, the populations satisfy predicate E1 from generation t0 until
at least generation t7. Informally, this means that not much more than a quarter
of the predator-prey pairs belong to the first quadrant R0 × S0.

Lemma 8. Under Assumption 2, Phase 1 with τ1 = 0 and predicate E1 is suc-
cessful with probability at least 1− 2τe−Ω(λ).

Proof (Proof of Lemma 8). If Xt ≤ λ
2 (1 + ε), then by Lemma 3 with parameter

A = R0, the probability that for all t ∈ [t2, t7], it holds Xt+1 ≤ λ
2 (1 + ε) is at

least 1−e−Ω(λ). By symmetry of the problem and the algorithm, if Yt ≤ λ
2 (1+ε),

then the probability that Yt+1 ≤ λ
2 (1 + ε) is at least 1 − e−Ω(λ). Furthermore,

for any x′ ∈ X \A,

Pr
x∼mutx(x′)

(x ∈ A) ≤ 1− Pr
x∼mutx(x′)

(x = x′)

= 1− r(0)
≤ ε/6,

where the last inequality follows from Assumption 2. The lemma now follows by
a union bound over t7 − t2 ≤ τ generations.

Phase 2 Assuming no failure in Phase 1, Phase 2 starts at generation t2 with
at most λ

2 (1 + ε) predators in R0, and at most λ
2 (1 + ε) prey in S0 (predicate

E1). After generation t2 of a successful Phase 2, at least γ0λ predators belong to
region R0 (predicate E2).

To analyse the success probability of Phase 2, we apply Theorem 4 with the
m = (1− β)n+ 1 levels defined ∀j ∈ [m] by

Aj :=

{
X if j = 0, and
R0 ∪R1(j) otherwise,

Bj := Y (11)
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Fig. 6: (a1)–(a4): Four ways of selecting a predator in R0 ∪ R1 during Phase 2.
(b1)–(b4): Four ways of selecting a prey in S0 ∪ S1 during Phase 4.

These levels are illustrated in Figure 6, (a1)–(a4), and satisfy the following in-
clusions R0 = Am ⊂ Am−1 ⊂ · · · ⊂ Aj+1 ⊂ Aj ⊂ · · · ⊂ A0 = X .

Lemma 9. Let ε, γ0, δ ∈ (0, 1) be as in Definition 3. If q0 ≤ (1/2)(1 + ε) and
p0 + p = γ ≤ γ0 and γ0 + ε < 1−2δ

3 , then psel(R0 ∪R1) ≥ γ(1 + δ).

Proof (Proof of Lemma 9). Following cases (a1)–(a4) in Figure 6, the algorithm
selects a predator in region R0 ∪ R1 in the if: x1, x2 ∈ R0 ∪ R1 (a1), x1 ∈ R0,
x2 ∈ R2 and x3 ∈ R1 (a2), x1 ∈ R1, x2 ∈ R2, y1 ∈ S0 and y2 /∈ S0 (a3),
and x1 ∈ R1, x2 ∈ R2, y1, y2 /∈ S0 (a4). Additionally, the cases (a2)–(a4) have
alternatives where x2 is exchanged for x1 or x3 and y1 is exchanged for y2.
Adding all these cases we obtain,

psel(R0 ∪R1) = (p0 + p)2 + 2p0(1− p− p0)(1− p0) + 2p(1− p− p0)2q0(1− q0) + 2p(1− p− p0)(1− q0)2

≥ γ2 + 2p0(1− γ)2 + 2p(1− γ)(1− q0)(2q0 + 1− q0)
= γ2 + 2p0(1− γ)2 + 2p(1− γ)(1− q20)

≥ γ2 + 2p0(1− γ)2 + 2p(1− γ)
(
1− 1

4
(1 + ε)2

)
= γ2 + 2p0(1− γ)2 + 2p(1− γ)

(
3

4
− ε

2
− ε2

4

)
> γ2 + 2(1− γ)

(
p0(1− γ) + p

3

4
(1− ε)

)
> γ2 + 2(1− γ0)

3

4
(1− ε)(p0 + p)

= γ

(
γ +

3

2
(1− γ0)(1− ε)

)
> γ

(
1 +

1

2
− 3

2
(γ0 + ε)

)
> γ(1 + δ).
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The next lemma provides an upper bound on the the expected time to satisfy
predicate E2.

Lemma 10. Under Assumptions 1 and 2, if Phase 1 is successful, then Phase 2
with τ2 = O

(
nλ2(1− β) + n ln(1/β)

)
is successful with probability at least 9/10−

τe−Ω(λ).

Proof (Proof of Lemma 10). In the following, we let T denote the runtime until
condition E2 is satisfied assuming that Phase 1 was successful. We apply Theo-
rem 4 with the m = n(1− β) + 1 levels defined in (11).

We first verify condition (G2a). Since Bj+1 = Y, Pr [y ∈ Y] = 1. Now, for
any j ∈ [0..m − 1], suppose that ∥(Pt × Qt) ∩ (Aj+1 × Bj+1)∥ ≥ γλ2. Then,
p0+p = |Pt∩Aj+1|/λ2 = γ, and by Lemma 9, we have Pr [x′ ∈ Aj+1] ≥ γ(1+δ).
Additionally by by Assumption 2 Pr [x ∈ Aj+1 | x′ ∈ Aj+1] ≥ r(0) ≥ (1 − δ/2).
Then,

Pr [x ∈ Aj+1] Pr [y ∈ Bj+1]

≥ Pr [x′ ∈ Aj+1] Pr [x ∈ Aj+1 | x′ ∈ Aj+1] Pr [y ∈ Y]
≥ γ(1 + δ)r(0)

≥ γ(1 + δ)(1− δ/2)

≥ γ
(
1 +

δ

2
(1− δ)

)
.

Hence, condition (G2a) is satisfied. Condition (G2b) can be shown following the
same steps but using Aj , Bj and γ0.

We now prove condition (G1). Since Bj+1 = Y for all j, we have

Pr [x ∈ Aj+1] Pr [y ∈ Bj+1] = Pr [x ∈ Aj+1] .

It therefore remains to compute the probability that an offspring predator x
belongs to level Aj+1 assuming we already have at least γ0λ predators in Aj .
If the selected predator x′ is in Aj \ Aj+1 , then x has exactly j 0-bits, and it
suffices to flip one 1-bit and no other bits to produce an offspring in Aj+1. If x′
already belongs to Aj+1, then it suffices to flip no bits, we pessimistically assume
this does not happen. Hence, in overall, we have

Pr [x ∈ Aj+1] ≥ Pr [x′ ∈ Aj ] Pr [x ∈ Aj+1 | x′ ∈ Aj ]

≥ γ0(1 + δ)
(n− j)r(1)

n
=: zj .

Condition (G1) is therefore satisfied for the parameters zj = Θ(1− j/n).
Finally, condition (G3) is satisfied by choosing λ ≥ c log(n) for a sufficiently

large constant c.
By Theorem 4, starting from any initial configuration, for some sufficiently

large constant c′′ and r = 1/10, the time (in terms of function evaluations) until
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|Pt ∩R0| ≥ γ0λ satisfies Pr [T ≥ λτ2] < 1/10 with

τ2 = O(λ2m+

m−1∑
j=0

1/zj)

= O

λ2n(1− β) + n(1−β)−1∑
j=0

n

n− j


= O

λ2n(1− β) + n

 n∑
j=1

1

j
−

βn∑
j=1

1

j


= O

(
λ2n(1− β) + n ln

(
n

βn

))
= O

(
λ2n(1− β) + n ln(1/β)

)
.

Note that for all x′ ∈ A, by Assumption 2,

Pr
x∼mutx(x′)

(x ∈ A) ≥ Pr
x∼mutx(x′)

(x = x′)

= r(0)

≥ 1− ε/6
> 1− ε/4,

hence the assumption of Lemma 4 is satisfied.
Therefore, ifXt2 ≥ γ0λ, then by Lemma 4 and a union bound, the probability

that for all t ∈ [t2, t7], it holds Xt ≥ γ0λ is at least 1− τe−Ω(λ). The statement
now follows by a union bound.

Phase 3 After the next phase, we need to assure that at least λ
2 (1− ε) belong

to region R0 (predicate E3). Since predators in R0 rank prey differently than
predators in R1 ∪ R2, the diversity mechanism in the algorithm ensures that
R0-predators quickly expand once they are discovered, as shown in Lemma 4.

Lemma 11. If Phase 2 is successful, then Phase 3 with τ3 = O(1) is successful
with probability 1− τe−Ω(λ).

Proof (Proof of Lemma 11). Note first that since γ0 and ε are constants, there
exists a τ3 = O(1) such that Xt2(1 + ε

16 )
τ3 ≥ λ

2 (1 − ε). Hence, by Lemma 4
and a union bound, for all t ∈ [t3, t7], Xt ≥ λ

2 (1 − ε) with probability at least
1− τe−Ω(λ).

Phase 4 If Phase 3 is successful, then Phase 4 starts with Xt4 ≥ λ
2 (1−ε). After

generation t4 of a successful Phase 4, at least γ0λ prey belong to region S0.
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Note that the analysis of Phase 4 is analogous to the analysis of Phase 2. In
Phase 4, we will consider the following levels.

Aj := X Bj :=

{
Y if j = 0, and
S0 ∪ S1(j) otherwise,

(12)

The levels are illustrated in Figure 6 (b1)–(b4). Note the following inclusion in
the levels S0 = Bm ⊂ Bm−1 ⊂ · · · ⊂ Bj+1 ⊂ Bj ⊂ · · · ⊂ B0 = Y.

Lemma 12. Let ε, γ0, δ ∈ (0, 1) be as in Definition 3. If (1/2)(1 − ε) ≤ p0 ≤
(1/2)(1 + ε) and q0 + q = γ, then for sufficiently small γ0, there exists a δ > 0
such that psel(S0 ∪ S1) ≥ γ(1 + δ).

Proof (Proof of Lemma 12). Following cases (b1)–(b4) in Figure 6, the algorithm
selects a prey in region S0 ∪ S1 if: y1, y2 ∈ S0 ∪ S1 (b1), y1 ∈ S0, y2 ∈ S2 and
y3 ∈ S3 (b2), y1 ∈ S1, y2 ∈ S2, x1 ∈ R0 and x2 /∈ R0 (b3), and y1 ∈ S1, Y2 ∈ S2,
x1, x2 /∈ R0 (b4). Additionally, the cases (b2)–(b4) have alternatives where y2
is exchanged for y1 or y3 and x1 is exchanged for x2. Adding all these cases we
obtain

psel(S0 ∪ S1) ≥ (q0 + q)2 + 2q0(1− q − q0)(1− q0)+
2(1− q − q0)qp0(2− 2p0 + p0)

≥ γ2 + 2q0(1− γ)2 + 2q(1− γ)1
2
(1− ε)

(
2− 1

2
(1 + ε)

)
for sufficiently small ε

> γ2 + 2q0(1− γ)2 +
5

4
q(1− γ)

> γ2 +
5

4
(1− γ)2(q0 + q))

= γ

(
5

4
− 3

2
γ + γ2

)
> γ

(
5

4
− 3

2
γ0

)
> γ(1 + δ)

where the last inequality holds for sufficiently small γ0.

Lemma 13. Under Assumptions 1 and 2, if Phase 3 is successful, then Phase
4 with τ4 = O

(
n(λ2(1− α) + ln(1/α)

)
is successful with probability 9/10 −

τe−Ω(λ).

Proof (Proof of Lemma 13). By using the symmetry between R0 and S0, the
proof is analogous to the proof of Lemma 10, but uses Lemma 12 instead of
Lemma 9.
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Phase 5 Phase 5 is analogous to Phase 3. If Phase 4 is successful, the algorithm
has obtained at least γ0λ prey in S0, and it is straightforward to prove that the
algorithm quickly acquires atlemmaallend least λ

2 (1 − ε) prey in S0 (predicate
E5).

Lemma 14. If Phase 4 is successful, then Phase 5 with τ3 = O(1) is successful
with probability 1− τe−Ω(λ).

Proof (Proof of Lemma 14). The proof is analogous to the proof of Lemma 11.

Phase 6 If Phase 5 is successful, then Phase 6 starts with Xt ≥ λ
2 (1 − ε) and

Yt ≥ λ
2 (1 − ε). Informally, after generation t6, γ0λ predators correspond to the

optimum for the predators.
To analyse the success probability of Phase 6, we apply Lemma 4 with the

levels Aj := R1(j), Bj := S1(0).

Fig. 7: (a1)–(a4): Four ways of selecting a predator in R0 ∪ R1 during Phases 6
and 7. (b1)–(b4): Four ways of selecting a prey in S0 ∪S1 during Phase 6 and 7.

Lemma 15. Let ε, γ0, δ ∈ (0, 1) be as in Definition 3. If (1/2)(1 − ε) ≤ p0 ≤
(1/2)(1 + ε) and (1/2)(1− ε) ≤ q0 ≤ (1/2)(1 + ε), and pq ≤ γ0, then

psel(R1)

p
≥ 1

4
(5− 2p− 9ε), and

psel(S1)

q
≥ 5

4
− q

2
− 11ε

4
.

Furthermore, if ε and γ0 are sufficiently small constants, there exists a constant
δ > 0 such that

psel(R1)

p

psel(S1)

q
≥ 1 + δ.



38 M. A. Hevia Fajardo and P. K. Lehre

Proof (Proof of Lemma 15). As illustrated in cases (a1)–(a4) in Figure 7, the
algorithm selects a search point x′ ∈ R1 in four cases (and their permutations
with respect to x1, x2, x3, y1, y2): x1, x2 ∈ R1 (a1), x1 ∈ R1, x2 ∈ R0 and x3 ∈ R0

(a2), x1 ∈ R1, x2 ∈ R2, y1, y2 /∈ S0 (a3), and x1 ∈ R1, x2 ∈ R2, y1 ∈ S0 and
y2 /∈ S0 (a4) having the following probabilities,

psel(R1) = p2 + 2pp20 + 2p(1− p− p0)(1− q0)2 + 2p(1− p− p0)2q0(1− q0)
= p(p+ 2p20 + 2(1− p− p0)(1− q0)(1− q0 + 2q0))

= p(p+ 2p20 + 2(1− p− p0)(1− q20))

Using the assumptions on p0 and q0, we obtain

psel(R1)

p
≥ p+ 2

4
(1− ε)2 + 2

(
1− p− 1

2
(1 + ε)

)(
1− 1

4
(1 + ε)2

)
> p+

1

2
(1− 2ε) + 2

(
1

2
− p− ε

2

)(
3

4
− ε

2
− ε2

4

)
=

5

4
− p

2
+
pε2

2
+ pε+

ε3

4
+
ε2

4
− 9ε

4

>
5

4
− p

2
− 9ε

4

>
5

4
− p

2
− 3ε.

Analogously to psel(R1), we have

psel(S1) = q2 + 2qq20 + 2q(1− q − q0)p20 + 2q(1− q − q0)2p0(1− p0)
= q(q + 2q20 + 2(1− q − q0)p0(p0 + 2(1− p0))
= q(q + 2q20 + 2(1− q − q0)p0(2− p0))

Applying the assumptions on p0 and q0, we obtain

psel(S1)

q
≥ q + 2

4
(1− ε)2 + 2

(
1− q − 1

2
(1 + ε)

)
1

2
(1− ε)

(
2− 1

2
(1 + ε)

)
≥ q + 1

2
(1− 2ε) +

(
1

2
− q − ε

2

)
(1− ε)

(
3

2
− ε

2

)
=

5

4
− q

2
− qε2

2
+ 2qε− ε3

4
+

5ε2

4
− 11ε

4

>
5

4
− q

2
− 11ε

4

>
5

4
− q

2
− 3ε.

For the rest of the proof, we can assume without loss of generality that q ≤ p,
since they contribute equally to psel(R1)

p and psel(S1)
q respectively. We therefore
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have q2 ≤ pq ≤ γ0 so q ≤ √γ0. Furthermore, since p0 ≥ 1
2 (1 − ε), we must also

have p ≤ 1
2 (1 + ε). This now gives

psel(R1)

p

psel(S1)

q
≥
(
5

4
− p

2
− 3ε

)(
5

4
− q

2
− 3ε

)
≥
(
5

4
− 1

4
(1 + ε)− 3ε

)(
5

4
−
√
γ0

2
− 3ε

)
=

(
1− 13ε

4

)(
5

4
−
√
γ0

2
− 3ε

)
≥ 1 + δ.

The last inequality holds for a suitable choice of ε and γ0

Lemma 16. Under Assumptions 1 and 2, if Phase 5 is successful, then Phase
6 with τ6 = O(nλ2(1− β) + n ln(1/β)) is successful with probability 9/10.

Proof (Proof of Lemma 16). The proof uses Theorem 4, analogously to Lemma 10.
In particular, Conditions (G2a) and (G2b) are satisfied due to Lemma 15. Given
that the algorithm is at the current level j Condition (G1) can be satisfied for
the parameters

zj ≥ γ0(1 + δ)

(
n− j
n

)
r(0)r(1),

corresponding to the probability of selecting a predator-prey pair (x′, y′) in
R1(j) × S1(0) (which probability can be bounded using Lemma 15), not flip-
ping any bit in the prey, and flipping at most one 1-bit in the predator.

Phase 7 If Phase 6 is successful, then the final Phase 7 begins with |Pt∩R1(n(1−
β)− 1)| ≥ γ0λ. In a successful Phase 7, the optimum is found in generation t7.

To obtain a lower bound on the success probability in Phase 7, we apply
Theorem 4 with the levels

Aj := R1(n(1− β)− 1) Bj := S1(j). (13)

Lemma 17. Under Assumptions 1 and 2, if Phase 6 is successful, then Phase
7 with τ7 = O

(
(1− α)nλ2 + n ln(1/α)

)
is successful with probability 9/10.

Proof (Proof of Lemma 17). We apply Theorem 4 with the m = n(1 − α) + 1
levels defined in (13).
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We first verify condition (G2a). For any j ∈ [0..m − 1], suppose that (Pt ×
Qt) ∩ (Aj+1 ×Bj+1) ≥ γλ2. Then, pq = γ, and by Lemma 15, we have

Pr [x ∈ A≥j+1] Pr [y ∈ B≥j+1]

≥ Pr [x′ ∈ A≥j+1] Pr [x ∈ A≥j+1 | x′ ∈ A≥j+1]

· Pr [y′ ∈ B≥j+1] Pr [y ∈ B≥j+1 | y′ ∈ B≥j+1]

≥ γ(1 + δ)r2(0)

≥ γ(1 + δ)(1− δ/2)

= γ

(
1 +

δ

2
(1− δ)

)
.

Hence, condition (G2a) is satisfied. Condition (G2b) can be shown similarly.
We now prove condition (G1). Assume that there exist at least γ0λ pairs in

Aj ×Bj as assumed by Theorem 4. We need to lower bound the probabilities of
producing a predator in Aj+1 and a prey in Bj+1. Since Aj+1 = R1(n(1−β)−1)
for all j, it suffices for the first probability to estimate the probability of selecting
a predator in Aj and not flipping any bits. The probability of this event is at
least

Pr [x ∈ Aj+1] ≥ Pr
[
x′ ∈ A(1)

j

]
Pr
[
x ∈ A(1)

j+1 | x
′ ∈ A(1)

j

]
= psel(R1)r(0).

We now compute the probability that an offspring prey y belongs to level
Bj+1. If the selected prey y′ is in Bj \Bj+1 , then y has exactly n− j 0-bits, and
it suffices to flip one 0-bit and no other bits to produce an offspring in Bj+1. If
y′ already belongs to Bj+1, then it suffices to flip no bits. Hence, in overall, we
have

Pr [y ∈ Bj+1] ≥ psel(S1)Pr [x ∈ Bj+1 | x′ ∈ Bj ]
≥ psel(S1)(n− j)r(1).

In overall, we have

Pr [x ∈ Aj+1] Pr [y ∈ Bj+1] ≥ psel(R1)psel(S1)(n− j)r(0)r(1)

by Lemma 15

≥ (1 + δ)γ0

(
n− j
n

)
r(0)r(1) := zj .

Condition (G1) is therefore satisfied for the parameters zj = Θ(1− j/n).
Finally, condition (G3) is satisfied by choosing λ ≥ c log(n) for a sufficiently

large constant c.
By Theorem 4 with r = 10 and a sufficiently large constant c′′, the time T

(in function evaluations) until Pt × Qt ∩ (S1(n(1 − β)) × R1(αn)) ̸= ∅ satisfies



Ranking Diversity Benefits CoEAs on an Intransitive Game 41

Pr [T ≥ λτ7] < 1/10 where

τ7 = O

λ2m+

m−1∑
j=0

1/zj


= O

λ2m+

n(1−α)∑
j=0

n

n− j


= O

(
(1− α)nλ2 + n ln(1/α)

)
Theorem 2. For all αn, βn /∈ Z, Algorithm 2 with parameter satisfying As-
sumption 2 has expected runtime O(nλ3−nλ ln(αβ(1−β)(1−α))) on Bilinearα,β.

Proof (Proof of Theorem 2). Under Assumption 1, the statement follows from
Lemmas 8, 10, 11, 13, 14, 16, and 17. In particular, each era lasts τ =

∑7
i=1 τi =

O((2−α− β)nλ2 + n ln(1/(αβ))) generations and is successful with probability
Ω(1). Hence, a successful era occurs in expectation after O(1) eras, or equiva-
lently, after O(λτ) evaluations of the payoff function.

We now consider the case that Assumption 1 does not hold. In the case of
the “rotated” assumption |Pt0 ∩ R0| > λ

2 (1 + ε) and |Qt0 ∩ S0| > λ
2 (1 + ε), it

suffices to consider the predicates

E2(P,Q) := γ0λ ≤ |P ∩ (R1 ∪R2)|

E3(P,Q) :=
λ

2
(1− ε) ≤ |P ∩ (R1 ∪R2)|

E4(P,Q) := γ0λ ≤ |P ∩ (S1 ∪ S2)|

E5(P,Q) :=
λ

2
(1− ε) ≤ |P ∩ (S1 ∪ S2)|

E6(P,Q) :=
λ

2
(1− ε) ≤ |Q ∩ S1(αn− 1)|

E7(P,Q) := ∃x ∈ P,∃y ∈ Q, ∥x∥ = βn ∧ ∥y∥ = αn

An equivalent analysis shows that the era in this case lasts τ = O((β + 1 −
α)nλ2 + n ln(1/(α(1− β))) generations and is successful with probability Ω(1).
The overall runtime now follows by considering all rotations of Assumption 1.


