
Hard Problems are Easier for Success-based Parameter Control
Mario Alejandro Hevia Fajardo
Department of Computer Science

University of Sheffield, Sheffield, UK

Dirk Sudholt
Chair of Algorithms for Intelligent Systems
University of Passau, Passau, Germany

ABSTRACT
Recent works showed that simple success-based rules for self-
adjusting parameters in evolutionary algorithms (EAs) can match
or outperform the best fixed parameters on discrete problems. Non-
elitism in a (1, 𝜆) EA combined with a self-adjusting offspring pop-
ulation size 𝜆 outperforms common EAs on the multimodal Cliff
problem. However, it was shown that this only holds if the success
rate 𝑠 that governs self-adjustment is small enough. Otherwise, even
on OneMax, the self-adjusting (1, 𝜆) EA stagnates on an easy slope,
where frequent successes drive down the offspring population size.

We show that self-adjustment works as intended in the absence
of easy slopes. We define everywhere hard functions, for which
successes are never easy to find and show that the self-adjusting
(1, 𝜆) EA is robust with respect to the choice of success rates 𝑠 . We
give a general fitness-level upper bound on the number of eval-
uations and show that the expected number of generations is at
most 𝑂 (𝑑 + log(1/𝑝+min)) where 𝑑 is the number of non-optimal
fitness values and 𝑝+min is the smallest probability of finding an
improvement from a non-optimal search point. We discuss implica-
tions for the everywhere hard function LeadingOnes and a new
class OneMaxBlocks of everywhere hard functions with tunable
difficulty.

CCS CONCEPTS
• Theory of computation → Theory of randomized search heuris-

tics;

KEYWORDS
Parameter control, Theory, Runtime analysis, Non-elitism, Drift
analysis
ACM Reference Format:
Mario Alejandro Hevia Fajardo and Dirk Sudholt. 2022. Hard Problems are
Easier for Success-based Parameter Control. In Genetic and Evolutionary

Computation Conference (GECCO ’22), July 9–13, 2022, Boston, MA, USA.

ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3512290.3528781

1 INTRODUCTION
Evolutionary algorithms exhibit a number of important parameters
such as the mutation rate, the population size and the selection
pressure that have to be chosen carefully to obtain the best possible

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’22, July 9–13, 2022, Boston, MA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-9237-2/22/07. . . $15.00
https://doi.org/10.1145/3512290.3528781

performance. There is wide empirical evidence, including a number
of runtime analyses [7], showing that the performance of evolution-
ary algorithms can drastically depend on the choice of parameters.
One way of choosing parameters is to try and adapt parameters
during the course of a run. This is called parameter control, and it
forms a key component in evolutionary algorithms for continuous
domains. In the discrete domain, studying the benefit of parameter
control from a theoretical perspective has become a rapidly emerg-
ing area. Many recent results have shown that parameter control
mechanisms can compete with or even outperform the best static
parameter settings [1, 2, 7, 8, 11, 23].

Even conceptually simple mechanisms have turned out to be
surprisingly powerful. The idea behind self-adjusting parameters is
to adapt parameters according to information gathered throughout
the run of an algorithm. One example is the information whether
the current generation leads to an improvement of the current
best fitness or not. The former is called a success. We describe the
approach for self-adjusting the offspring population size 𝜆 using
so-called success-based rules that will be studied in this work. It
is a variant of the famous one-fifth success rule [29] from [20]
that was first studied in the discrete domain in [6]. For an update
strength 𝐹 > 1 and a success rate 𝑠 > 0, in a generation where no
improvement in fitness is found, 𝜆 is increased by a factor of 𝐹 1/𝑠 .
In a successful generation, 𝜆 is divided by a factor 𝐹 . If precisely one
out of 𝑠 + 1 generations is successful, the value of 𝜆 is maintained.
The case 𝑠 = 4 is the one-fifth success rule [20, 29].

Studying parameter control mechanisms in the discrete domain
is a rapidly emerging topic. The first runtime analysis by Lässig
and Sudholt [22] concerned self-adjusting the offspring population
size in the (1 + 𝜆) EA (using a simpler mechanism with hard-coded
values 𝐹 = 2 and 𝑠 = 1) and adapting the number of islands in island
models. Mambrini and Sudholt [25] adapted the migration interval
in island models and showed that adaptation can reduce the commu-
nication effort beyond the best possible fixed parameter. Doerr and
Doerr [6] proposed the aforementioned self-adjusting mechanism
in the (1 + (𝜆, 𝜆)) GA based on the one-fifth rule (using 𝑠 = 4) and
proved that it optimises the well known benchmark function One-
Max (𝑥) = ∑𝑛

𝑖=1 𝑥𝑖 in 𝑂 (𝑛) expected evaluations, being the fastest
known unbiased genetic algorithm on OneMax. The present au-
thors (Hevia Fajardo and Sudholt [15]) studied modifications to the
self-adjusting mechanism in the (1 + (𝜆, 𝜆)) GA on Jump functions,
showing that they can perform nearly as well as the (1 + 1) EAwith
the optimal mutation rate. Doerr, Doerr, and Kötzing [9] presented
a success-based choice of the mutation strength for an RLS variant,
proving that it is very efficient for a generalisation of the OneMax
problem to larger alphabets. Doerr, Gießen, Witt, and Yang [12]
showed that a success-based parameter control mechanism is able
to identify and track the optimal mutation rate in the (1+𝜆) EA
on OneMax, matching the performance of the best known fitness-
dependent parameter [1, 23]. Doerr, Doerr, and Lengler [10] proved

796

https://doi.org/10.1145/3512290.3528781
https://doi.org/10.1145/3512290.3528781
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3512290.3528781&domain=pdf&date_stamp=2022-07-08

GECCO ’22, July 9–13, 2022, Boston, MA, USA Mario Alejandro Hevia Fajardo and Dirk Sudholt

that a success-based parameter control mechanism based on the
one-fifth rule is able to achieve an asymptotically optimal runtime
on LeadingOnes with the best performance obtained, when using
a success rate 𝑠 = 𝑒 − 1. Rajabi and Witt [27] proposed a stagnation
detection mechanism that raises the mutation rate when the algo-
rithm is likely to have encountered a local optima. The mechanism
can be added to any existing EA; when added to the (1 + 1) EA,
the SD–(1 + 1) EA has the same asymptotic runtime on Jump as
the optimal parameter setting. Rajabi and Witt [28] further added
the stagnation detection mechanism to RLS, obtaining a constant
factor speed-up from the SD–(1 + 1) EA.

All these results show that self-adjustment can be very effective,
sometimes even beating optimal static parameters, and, crucially,
without needing to know which static parameters are optimal. We
note that self-adjusting mechanisms often come with extra hyper-
parameters, but these tend to be easier to choose and more robust.

Most theoretical analyses of self-adjusting mechanisms focus on
elitist EAs that always reject worsening moves. Elitism facilitates
a theoretical analysis and many easy problems (such as OneMax)
benefit from elitism. However, the performance improvements ob-
tained through parameter control for elitist algorithm is fairly mild
in many of the above examples.

In our previous work [16, 17] we recently argued that larger
speedups can be obtained by studying non-elitist evolutionary al-
gorithms on harder problems. We studied a non-elitist (1, 𝜆) EA
with self-adjusting offspring population size 𝜆 on the multimodal
Cliff function [19]. The function is defined similarly to OneMax,
however evolutionary algorithms are forced to jump down a “cliff”
in fitness, i. e. accept a significant fitness loss, or to jump across a
huge fitness valley. This task is very difficult for several randomised
search heuristics, including the (1+1) EA [26], the Metropolis al-
gorithm [24] and the Strong Selection Weak Mutation algorithm
(SSWM) [26]. Comma selection in a (1, 𝜆) EA can be more effec-
tive [19], however even with an optimal value of 𝜆, the expected
optimisation time of the (1, 𝜆) EA is a polynomial of large degree
𝜂 ≈ 3.9767, up to sub-polynomial factors [16].

We also showed [16] that a self-adjusting (1, 𝜆) EA, enhanced
with a mechanism resetting 𝜆 if it grows too large, is able to opti-
mise Cliff in 𝑂 (𝑛) expected generations and 𝑂 (𝑛 log𝑛) expected
evaluations. The algorithm has a good chance of jumping down
the cliff after a reset of 𝜆, when the offspring population size is
still small, and to then recover an offspring population size large
enough to enable hill climbing to the global optimum. This makes
the self-adjusting (1, 𝜆) EA the fastest known common evolutionary
algorithm1 on Cliff.

However, this success is only possible when the success rate 𝑠
that governs the self-adaptation mechanism is appropriately small.
In [18] (and refined results in [17]) we showed that, even on the sim-
ple function OneMax, while the self-adjusting (1, 𝜆) EA optimises
OneMax in 𝑂 (𝑛) expected generations and 𝑂 (𝑛 log𝑛) evaluations
if 𝑠 < 1 and 𝐹 > 1, the algorithm requires exponential time with
high probability if 𝑠 ≥ 18 and 𝐹 ≤ 1.5. The reason is that for large
values of 𝑠 , unsuccessful generations only increase the population
size very slowly, by a factor of 𝐹 1/𝑠 (which converges to 1 as 𝑠

1Earlier work showed the same 𝑂 (𝑛 log𝑛) bound, but required components from
artificial immune systems, such as ageing [3] and hypermutations [24].

grows), whereas successful generations decrease 𝜆 by a compar-
atively large factor of 𝐹 . If the algorithm finds frequent improve-
ments, the offspring population size is likely to decrease to very
low values. Then the algorithm has a very low selection pressure
and is likely to accept worsenings, namely if all offspring are worse
than their parent. Such a situation occurs on the slope to the global
optimum of OneMax, when the current search point still has a
linear Hamming distance from the optimum and improvements are
found easily. This behaviour is not limited to OneMax; it holds for
other common benchmark functions that have easy slopes [17].

In this work we show that the self-adjusting (1, 𝜆) EA is robust
with respect to the choice of the success rate if the fitness function
is sufficiently hard. We define a class of everywhere hard fitness
functions, where for all search points the probability of finding
an improvement is bounded by 𝑛−𝜀 , for a constant 𝜀 > 0. A well-
known example is the function LeadingOnes(𝑥) := ∑𝑛

𝑖=1
∏𝑖

𝑗=1 𝑥 𝑗
that counts the length of the longest prefix of bits set to 1: for every
non-optimal search point, an improvement requires the first 0-bit
to be flipped.

We show that on all everywhere hard functions 𝜆 quickly reaches
a sufficiently large value such that fitness decreases become unlikely
and the self-adjusting (1, 𝜆) EA typically behaves like an elitist al-
gorithm. We then present simple and easy to use general upper
bounds for the runtime of the self-adjusting (1, 𝜆) EA on every-
where hard functions that apply for all constant success rates 𝑠 and
update strengths 𝐹 > 1. More specifically, we show a general upper
bound on the expected number of evaluations using the fitness-
level method that asymptotically matches the bound obtained for
the (1 + 1) EA. For the expected number of generations, we show
an upper bound of 𝑂 (𝑑 + log(1/𝑝+min)) where 𝑑 is the number of
non-optimal fitness values and 𝑝+min is the smallest probability of
finding an improvement from any non-optimal search point.

We obtain novel bounds of𝑂 (𝑑) expected generations and𝑂 (𝑑𝑛)
expected evaluations for all everywhere hard unimodal functions
with 𝑑 + 1 ≥ log𝑛 fitness levels. This is 𝑂 (𝑛) expected generations
and 𝑂 (𝑛2) expected evaluations for LeadingOnes. We then intro-
duce a problem class called OneMaxBlocks that allows us to tune
the difficulty of the fitness levels with a parameter 𝑘 . Varying this
parameter changes the behaviour of the function from a Leading-
Ones-like behaviour to a OneMax-like behaviour, allowing us to
explore how the difficulty of the function affects the runtime of the
self-adjusting (1, 𝜆) EA. Finally, we remark that, when choosing a
very small mutation probability of 1/𝑛1+𝜀 , 𝜀 > 0 constant, every
fitness function becomes everywhere hard for the self-adjusting
(1, 𝜆) EA and then our upper bounds apply to all fitness functions.

2 PRELIMINARIES
We study the expected number of generations and fitness evalua-
tions of (1, 𝜆) EA algorithmswith self-adjusted offspring population
size 𝜆, or self-adjusting (1, 𝜆) EA for short, shown in Algorithm 1.
Several mutation operators can be plugged into Line 4 to instantiate
a particular self-adjusting (1, 𝜆) EA. We will consider two operators.
Standard bit mutations flip each bit independently with a mutation
probability 𝑝 . Another mutation operator gaining popularity is the
heavy-tailed mutation operator proposed by Doerr et al. [13]. It
performs a standard bit mutation with a mutation probability of

797

Hard Problems are Easier for Success-based Parameter Control GECCO ’22, July 9–13, 2022, Boston, MA, USA

𝑝 = 𝜒/𝑛 and 𝜒 is chosen randomly in each iteration according to a
discrete power-law distribution on [1..𝑛/2] with exponent 𝛽 > 1.

The algorithm maintains a current search point 𝑥 and an off-
spring population size 𝜆. We define 𝑋0, 𝑋1, . . . as the sequence of
states of the algorithm, where 𝑋𝑡 = (𝑥𝑡 , 𝜆𝑡) describes the current
search point 𝑥𝑡 and the offspring population size 𝜆𝑡 at generation 𝑡 .
We often omit the subscripts 𝑡 when the context is obvious.

Note that we regard 𝜆 to be a real value, so that changes by factors
of 1/𝐹 or 𝐹 1/𝑠 happen on a continuous scale. Following [6, 16, 18],
we assume that, whenever an integer value of 𝜆 is required, 𝜆 is
rounded to a nearest integer. For the sake of readability, we often
write 𝜆 as a real value even when an integer is required.

Algorithm 1: Self-adjusting (1, {𝐹 1/𝑠𝜆, 𝜆/𝐹 }) EA.
1 Initialization: Choose 𝑥 ∈ {0, 1}𝑛 uniformly at random

(u.a.r.) and set 𝜆 := 1;
2 Optimization: for 𝑡 ∈ {1, 2, . . . } do
3 Mutation: for 𝑖 ∈ {1, . . . , 𝜆} do
4 𝑦′

𝑖
∈ {0, 1}𝑛 ← mutate(𝑥);

5 Selection: Choose 𝑦 ∈ {𝑦′1, . . . , 𝑦
′
𝜆
} with

𝑓 (𝑦) = max{𝑓 (𝑦′1), . . . , 𝑓 (𝑦
′
𝜆
)} u.a.r.;

6 Update:
7 if 𝑓 (𝑦) > 𝑓 (𝑥) then 𝑥 ← 𝑦; 𝜆 ← max{1, 𝜆/𝐹 };
8 else 𝑥 ← 𝑦; 𝜆 ← 𝐹 1/𝑠𝜆;

Since in all (1, 𝜆) EA algorithms selection is performed through
comparisons of search points and hence ranks of search points, the
absolute fitness values are not relevant. W. l. o. g. we may therefore
assume that the domain of any fitness function is taken as integers
{0, 1, . . . , 𝑑} where 𝑑+1 > 1 is the number of different fitness values
and all search points with fitness 𝑑 are global optima. We shall refer
to all search points with fitness 𝑖 , for 0 ≤ 𝑖 ≤ 𝑑 as fitness level 𝑖 .

We will use the following notation for all (1, 𝜆) EA algorithms.
Definition 2.1. In the context of the self-adjusting (1, 𝜆) EA with

𝜆𝑡 = 𝜆 for all 0 ≤ 𝑖 < 𝑑 and all search points 𝑥 with 𝑓 (𝑥) < 𝑑 we
define:

𝑝−
𝑥,𝜆

= Pr (𝑓 (𝑥𝑡+1) < 𝑓 (𝑥𝑡) | 𝑥𝑡 = 𝑥)
𝑝+
𝑥,𝜆

= Pr (𝑓 (𝑥𝑡+1) > 𝑓 (𝑥𝑡) | 𝑥𝑡 = 𝑥)
Δ−
𝑥,𝜆

= E (𝑓 (𝑥𝑡) − 𝑓 (𝑥𝑡+1) | 𝑥𝑡 = 𝑥 and 𝑓 (𝑥𝑡+1) < 𝑓 (𝑥𝑡))
Δ+
𝑥,𝜆

= E (𝑓 (𝑥𝑡+1) − 𝑓 (𝑥𝑡) | 𝑥𝑡 = 𝑥 and 𝑓 (𝑥𝑡+1) > 𝑓 (𝑥𝑡))
𝑠𝑖 = min

𝑥
{𝑝+𝑥,1 | 𝑥𝑡 = 𝑥 and 𝑓 (𝑥) = 𝑖}

Here 𝑠𝑖 is a lower bound on the probability of one offspring finding
an improvement from any search point in fitness level 𝑖 . We often
refer to the probability 𝑝+

𝑥,1 of one offspring improving the current
fitness and abbreviate 𝑝+𝑥 := 𝑝+

𝑥,1 and 𝑝
−
𝑥 := 𝑝−

𝑥,1.

As in [30], we call Δ+
𝑥,𝜆

forward drift and Δ−
𝑥,𝜆

backward drift

and note that they are both at least 1 by definition. Now, 𝑝+𝑥 is
the probability of one offspring finding a better fitness value and
𝑝+
𝑥,𝜆

= 1 − (1 − 𝑝+𝑥)𝜆 since it is sufficient that one offspring im-
proves the fitness. The probability of a fitness loss is 𝑝−

𝑥,𝜆
= (𝑝−𝑥)𝜆

since all offspring must have worse fitness than their parent.

We write 𝑝+min := min𝑥 {𝑝+𝑥 | 𝑓 (𝑥) < 𝑑} and
𝑝+max := max𝑥 {𝑝+𝑥 | 𝑓 (𝑥) < 𝑑} to denote the minimum and maxi-
mum value, resp., for 𝑝+𝑥 among all non-optimal search points 𝑥 .

We now define the class of functions that we will study through-
out this work. The most important characteristic is that there are
no easy fitness levels throughout the optimisation.

Definition 2.2. We say that a function 𝑓 is everywhere hard with
respect to a black-box algorithm A if and only if 𝑝+max = 𝑂 (𝑛−𝜀)
for some constant 0 < 𝜀 < 1.

Owing to non-elitism, the (1, 𝜆) EA may decrease its current
fitness if all offspring are worse. This is often a desired characteristic
that allows the algorithm to escape local optima, but if this happens
too frequently then the algorithm may not be able to converge to
good solutions. Hence, it is important that the probability of an
offspring having a lower fitness than its parent is sufficiently small.
The probability of this event depends on the mutation operator
used. The following lemma shows general bounds on transition
probabilities for standard bit mutation and heavy-tailed mutations.

Lemma 2.3. For all (1, 𝜆) EA algorithms using standard bit mu-

tation with a mutation probability in 𝑂 (1/𝑛) and 𝑛−𝑂 (1) or heavy-
tailed mutation operators with a constant 𝛽 > 1, there is a constant
𝛾 > 1 such that 𝑝−𝑥 ≤ 𝛾−1 for all non-optimal search points 𝑥 .

In addition, for all 0 ≤ 𝑖 ≤ 𝑑 − 1, 𝑝+𝑥 ≥ 𝑛−𝑂 (𝑛) .

Proof. Let𝐶 denote the event that an offspring is the exact copy
of a parent. When using standard bit mutation, if 𝜒 denotes the
implicit constant in the bound 𝑂 (1/𝑛) on the mutation probability,

Pr (𝐶) ≥
(
1 − 𝜒

𝑛

)𝑛
=

(
1 − 𝜒

𝑛

)𝑛−𝜒 (
1 − 𝜒

𝑛

) 𝜒
≥ 𝑒−𝜒 ·

(
1 − 𝜒2

𝑛

)
where the inequality follows from [5, Corollary 4.6] and Bernoulli’s
inequality. Since𝐶 implies that in this generation the current search
point cannot worsen, we have 𝑝−𝑥 ≤ 1 − Pr (𝐶), therefore there is a
constant 𝛾 > 1 for which 𝑝−𝑥 ≤ 𝛾−1.

The probability of the heavy-tailed mutation operator choosing
a mutation rate of 1/𝑛 is

©«
𝑛/2∑︁
𝑖=1

𝑖−𝛽ª®¬
−1

≥
(∞∑︁
𝑖=1

𝑖−𝛽
)−1

= Θ(1) .

Therefore the probability of creating an exact copy of the parent
using a heavy-tailed mutation operator is at least Θ(1) ·

(
1 − 1

𝑛

)𝑛
=

Θ(1) and there is a constant 𝛾 > 1 for which 𝑝−𝑥 ≤ 𝛾−1.
For the second statement, note that the probability of gener-

ating a global optimum in one standard bit mutation is at least(
𝑛−𝑂 (1)

)𝑛
= 𝑛−𝑂 (𝑛) . For heavy-tailed mutations, the probability of

choosing a mutation rate of 1/𝑛 is Θ(1) as shown above, and then
the probability of generating an optimum is at least 𝑛−𝑛 . □

We conclude this section with a helpful definition for specific
𝜆-values as follows.

Definition 2.4. Consider a function 𝑓 with 𝑑 fitness values that is
everywhere hard for a self-adjusting (1, 𝜆) EA with success rate 𝑠

798

GECCO ’22, July 9–13, 2022, Boston, MA, USA Mario Alejandro Hevia Fajardo and Dirk Sudholt

thatmeets the conditions fromLemma 2.3. Let𝛾 and 𝜀 be the parame-
ters from Lemma 2.3 andDefinition 2.2, respectively. Thenwe define
𝜆safe := 4max

(
log𝛾 (2𝑑 (𝑠 + 1)), log𝛾 (𝑛 log𝑛)

)
and 𝜆inc := 𝑛𝜀/2.

We consider 𝜆safe as a threshold for 𝜆 such that 𝜆-values larger
than 𝜆safe are considered “safe” because the probability of a fitness
loss is small. We aim to show that the algorithm will typically use
values larger than 𝜆safe throughout the optimisation. The value
𝜆inc is a threshold for 𝜆 such that any 𝜆-value with 𝜆 ≤ 𝜆inc has
a relatively small success probability. We will show that 𝜆 has a
tendency to increase whenever 𝜆 ≤ 𝜆inc.

3 BOUNDING THE NUMBER OF
GENERATIONS

We first focus on bounding the expected number of generations as
this bound will be used to bound the expected number of function
evaluations later on. The main result of this section is as follows.

Theorem 3.1. Consider a self-adjusting (1, 𝜆) EA using either

standard bit mutation withmutation probability 𝑝 ∈ 𝑂 (1/𝑛)∩𝑛−𝑂 (1)
or a heavy-tailed mutation operator with a constant 𝛽 > 1, a constant
update strength 𝐹 > 1 and a constant success rate 𝑠 > 0. For all
everywhere hard functions 𝑓 with 𝑑 + 1 = 𝑛𝑜 (log𝑛) function values

the following holds. For every initial search point and every initial

offspring population size 𝜆0 the self-adjusting (1, 𝜆) EA optimises 𝑓

in an expected number of generations bounded by

𝑂
(
𝑑 + log

(
1/𝑝+min

))
.

This result is related to Theorem 3 in [22] which shows the same
asymptotic upper bound for the elitist (1+{2𝜆, 𝜆/2}) EA (i. e. fixing
𝐹 = 2 and 𝑠 = 1) on functions on which fitness levels can only
become harder as fitness increases. Our Theorem 3.1 applies to
everywhere hard functions on which easy and hard fitness levels
are mixed in arbitrary ways. And, quite surprisingly, the upper
bound only depends on the hardest fitness level.

To bound the number of generations we first need to study how
the offspring population size behaves throughout the run. We start
by showing that in the beginning of the run 𝜆 grows quickly.

Lemma 3.2. Consider the self-adjusting (1, 𝜆) EA as in Theorem 3.1.

Let 𝜏 be first generation where 𝜆𝜏 ≥ 𝜆inc (cf. Definition 2.4). Then

E (𝜏) = 𝑂 (log 𝜆inc). During these 𝜏 generations the algorithm only

makes 𝜆0 +𝑂 (𝜆inc log 𝜆inc) function evaluations in expectation.

Proof. If the initial offspring population size 𝜆0 is at least 𝜆inc
then 𝜏 = 1 and 𝜆0 evaluations are made. Hence we assume 𝜆0 < 𝜆inc.

Following [18], the parameter 𝜆 is multiplied in each unsuccessful
generation by 𝐹 1/𝑠 and divided by 𝐹 otherwise. The probability of
an unsuccessful generation is at most

(
1 − 𝑝+𝑥

)𝜆 and the probability
of a successful generation is at least 1 −

(
1 − 𝑝+𝑥

)𝜆 .
Hence the expected drift of log𝐹 (𝜆) is at least

E
(
log𝐹 (𝜆𝑡+1) − log𝐹 (𝜆𝑡) | 𝜆𝑡 = 𝜆, 𝜆𝑡 ≤ 𝜆inc, 𝑥𝑡 = 𝑥

)
= log𝐹

(
𝜆𝐹 1/𝑠

) (
1 − 𝑝+𝑥

)𝜆 + log𝐹 (
𝜆

𝐹

) (
1 −

(
1 − 𝑝+𝑥

)𝜆) − log𝐹 (𝜆)
=

(
log𝐹 (𝜆) +

1
𝑠

) (
1 − 𝑝+𝑥

)𝜆 +

(
log𝐹 (𝜆) − 1

) (
1 −

(
1 − 𝑝+𝑥

)𝜆) − log𝐹 (𝜆)
=
𝑠 + 1
𝑠

(
1 − 𝑝+𝑥

)𝜆 − 1 ≥ 𝑠 + 1
𝑠

(
1 − 𝜆𝑝+𝑥

)
− 1

=
1 − (𝑠 + 1)𝜆𝑝+𝑥

𝑠
≥ 1 − (𝑠 + 1)𝜆inc𝑝+𝑥

𝑠
=

1
𝑠
−𝑂

(
𝑛−𝜀/2

)
≥ 1

2𝑠 (1)

where the last inequality holds for sufficiently large 𝑛, since 𝑠 is
constant.

We apply additive drift as stated in Theorem 7 in [21] as it allows
for an unbounded state space. We use the potential function

𝑟 (𝜆𝑡) = log𝐹 (𝜆inc) − log(𝜆𝑡),

which implies that when 𝑟 (𝜆𝑡) ≤ 0, 𝜆𝑡 is at least 𝜆inc. By Equa-
tion (1), the drift of 𝑟 (𝜆𝑡) is

E (𝑟 (𝜆𝑡) − 𝑟 (𝜆𝑡+1) | 𝜆𝑡 = 𝜆, 𝜆𝑡 ≤ 𝜆inc)

= E (log(𝜆𝑡+1) − log(𝜆𝑡) | 𝜆𝑡 = 𝜆, 𝜆𝑡 ≤ 𝜆inc) ≥
1
2𝑠 .

The initial value 𝑟 (𝜆0) is at most log𝐹 (𝜆inc) since we assumed
𝜆0 ≤ 𝜆inc. Now 𝜏 denotes the expected number of generations to
reach 𝑟 (𝜆𝑡) ≤ 0 for the first time, and 𝑟 (𝜆𝑡) ≥ − 1

𝑠 for all 𝑡 ≤ 𝜏 since
𝑟 (𝜆𝑡−1) > 0 and 𝑟 (𝜆𝑡−1) −𝑟 (𝜆𝑡) ≤ − log𝐹 (𝜆𝑡−1) + log𝐹 (𝐹 1/𝑠𝜆𝑡−1) =
1
𝑠 . Applying Theorem 7 in [21] with 𝛼 := − 1

𝑠 , we obtain

E (𝜏) ≤
log𝐹 (𝜆inc) + 1

𝑠

1/(2𝑠) = 2𝑠 log𝐹 (𝜆inc) + 2 = 𝑂 (log 𝜆inc).

Given that all generations use 𝜆 ≤ 𝜆inc, the expected num-
ber of evaluations during the 𝑂 (log 𝜆inc) expected generations is
𝑂 (𝜆inc log 𝜆inc). □

Now we show that, once 𝜆 reaches a value of at least 𝜆inc, the
algorithm maintains a large 𝜆 with high probability.

Lemma 3.3. Consider the self-adjusting (1, 𝜆) EA as in Theorem 3.1

at some point of time 𝑡∗. For every offspring population size 𝜆𝑡∗ ≥ 𝜆inc
the probability that within the next 𝑛𝑜 (log𝑛) generations the offspring
population size drops below 𝜆safe is at most 𝑛−Ω (log𝑛) .

Proof. We first note that 𝜆𝑡 ≥ 𝐹𝜆inc implies 𝜆𝑡+1 ≥ 𝜆inc with
probability 1. Thus, the interval [𝜆safe, 𝜆inc) can only be reached
if 𝜆𝑡 < 𝐹𝜆inc. We may assume that 𝜆𝑡∗ < 𝐹𝜆inc as otherwise we
can simply wait for the first point in time 𝑡∗∗ where 𝜆𝑡∗∗ < 𝐹𝜆inc
and redefine 𝑡∗ := 𝑡∗∗. If no such point in time 𝑡∗∗ exists, or if
𝑡∗∗ − 𝑡∗ ≥ 𝑛𝑜 (log𝑛) , there is nothing to show.

Assuming 𝜆𝑡∗ < 𝐹𝜆inc, we show that an improbably large num-
ber of successes are needed for the population size to drop be-
low 𝜆safe before returning to a population size of at least 𝐹𝜆inc. We
define a trial as the random time period starting at time 𝑡∗ and
ending when either 𝜆𝑡 < 𝜆safe or 𝜆𝑡 ≥ 𝜆𝑡∗ for some 𝑡 > 𝑡∗. The
length of a trial is given by

𝛼 := inf{𝑡 − 𝑡∗ | 𝜆𝑡 < 𝜆safe ∨ 𝜆𝑡 ≥ 𝜆𝑡∗ , 𝑡 > 𝑡∗}

and at the end of the trial, either 𝜆𝑡∗+𝛼 < 𝜆safe or 𝜆𝑡∗+𝛼 ≥ 𝜆𝑡∗ holds.
An important characteristic of the self-adjusting mechanism is

that if there are 1 or 0 successful generations every ⌈𝑠 + 1⌉ gener-
ations, 𝜆 will either grow or maintain its previous value, because
𝜆 · (𝐹 1/𝑠) ⌈𝑠 ⌉ · 1/𝐹 ≥ 𝜆. Hence, if from the start of a trial there are
at most 𝜅 successful generations during ⌈𝑠 + 1⌉ 𝜅 generations for

799

Hard Problems are Easier for Success-based Parameter Control GECCO ’22, July 9–13, 2022, Boston, MA, USA

every 𝜅 ∈ N then 𝜆𝑡+⌈𝑠+1⌉𝜅 ≥ 𝜆𝑡 , implying that the trail has ended
with an offspring population size of at least 𝜆𝑡∗ and 𝛼 ≤ ⌈𝑠 + 1⌉ 𝜅.

We now consider 𝜅∗ :=
⌈
log𝐹

(
𝜆inc
𝜆safe

)⌉
− 1 and show that, to

end a trial with 𝜆𝑡+𝛼 ≤ 𝜆safe, more than 𝜅∗ successful generations
are needed. For every 𝜆𝑡∗ ≥ 𝜆inc, after 𝜅∗ consecutive successful
generations the offspring population size is

𝜆𝑡∗+𝜅∗ =
𝜆𝑡∗

𝐹𝜅
∗ =

𝜆𝑡∗

𝐹

⌈
log𝐹

(
𝜆inc
𝜆safe

)⌉
−1

>
𝜆inc

𝐹
log𝐹

(
𝜆inc
𝜆safe

) = 𝜆safe .

If the successful generations are not consecutive, then the number
of successful generations needed to reduce the 𝜆 value can only
increase. Therefore, to reach 𝜆 ≤ 𝜆safe there must be more than 𝜅∗
successful generations.

Now, we know that if there are less than 𝜅∗ successful gen-
erations within the first ⌈𝑠 + 1⌉ 𝜅∗ generations of the trial then
𝜆𝑡∗+⌈𝑠+1⌉𝜅∗ ≥ 𝜆𝑡∗ and we end the trial without dropping below
𝜆safe. In every generation of a trial, at most 𝐹𝜆inc offspring are
created, thus by a union bound, the probability of a successful
generation is at most 𝐹𝜆inc𝑝+𝑥 .

Let 𝑋 be the number of successful generations within the first
⌈𝑠 + 1⌉ 𝜅∗ generations of a trial, then 0 < E (𝑋) ≤ ⌈𝑠 + 1⌉ 𝐹𝜆inc𝑝+𝑥𝜅∗.
Using 𝛿 := 𝜅∗E (𝑋)−1 − 1 and Chernoff bounds (Theorem 1.10.1
in [5]),
Pr

(
𝑋 ≥ 𝜅∗

)
= Pr (𝑋 ≥ E (𝑋) (1 + 𝛿))

≤ exp
(
−

(
𝜅∗E (𝑋)−1 ln

(
𝜅∗E (𝑋)−1

)
− 𝜅∗E (𝑋)−1 + 1

)
E (𝑋)

)
= exp

(
−

(
𝜅∗ ln

(
𝜅∗E (𝑋)−1

)
− 𝜅∗ + E (𝑋)

))
= 𝑒−E(𝑋)

(
𝑒E (𝑋)
𝜅∗

)𝜅∗
≤ 𝑒0

(
𝑒E (𝑋)
𝜅∗

)𝜅∗
≤

(
𝑒 ⌈𝑠 + 1⌉ 𝐹𝜆inc𝑝+𝑥

)⌈log𝐹 (
𝜆inc
𝜆safe

)⌉
−1

= 𝑛−Ω (log𝑛)

where the last equation uses that the base is Θ(𝜆inc𝑝+𝑥) = 𝑂 (𝑛𝜀/2 ·
𝑛−𝜀) = 𝑂 (𝑛−Ω (1)) and simplifying the exponent using

log𝐹 (𝜆inc/𝜆safe) = log𝐹 (𝑛𝜀/2) − log𝐹 (𝜆safe)
= 𝜀/2 · log𝐹 (𝑛) − 𝑜 (log𝑛)) = Ω(log𝑛).

Hence, with probability𝑛−Ω (log𝑛) a trial ends with an offspring pop-
ulation size of 𝜆𝑡∗+𝛼 ≥ 𝜆𝑡∗ and without dropping below 𝜆safe. Each
trial uses at least one generation. By a union bound over 𝑛𝑜 (log𝑛)
possible number of trials, the probability of reaching 𝜆 ≤ 𝜆safe
within 𝑛𝑜 (log𝑛) generations is still 𝑛−Ω (log𝑛) . □

Following previous work [17], we now define a potential func-
tion 𝑔(𝑋𝑡) as a sum of the current search point’s fitness and another
function ℎ(𝜆𝑡) that takes into account the current offspring popu-
lation size: 𝑔(𝑋𝑡) = 𝑓 (𝑥𝑡) + ℎ(𝜆𝑡).

Definition 3.4. We define the potential function 𝑔(𝑋𝑡) as

𝑔(𝑋𝑡) = 𝑓 (𝑥𝑡) −
𝑠

𝑠 + 1 log𝐹

(
max

(
𝐹 1/𝑠

𝑝+min𝜆𝑡
, 1

))
.

The function ℎ(𝜆𝑡) = 𝑠
𝑠+1 log𝐹

(
max

(
𝐹 1/𝑠

𝑝+min𝜆𝑡
, 1

))
is a straightfor-

ward generalisation of the approach from [17] in which the specific
value 𝑝+min = 1/(𝑒𝑛) was used in the context of OneMax.

Similar to the potential functions used in [16, 17] the potential
𝑔(𝑋𝑡) is always close to the current fitness.

Lemma 3.5. For all generations 𝑡 , the fitness and the potential are
related as follows: 𝑓 (𝑥𝑡) − 𝑠

𝑠+1 log𝐹
(
𝐹 1/𝑠

𝑝+min

)
≤ 𝑔(𝑋𝑡) ≤ 𝑓 (𝑥𝑡). In

particular, 𝑔(𝑋𝑡) = 𝑑 implies 𝑓 (𝑥𝑡) = 𝑑 .

Proof. The term 𝑠
𝑠+1 log𝐹

(
max

(
𝐹 1/𝑠

𝑝+min𝜆𝑡
, 1

))
is a non-increasing

function in 𝜆𝑡 with its minimum being 0 for 𝜆𝑡 ≥ 𝐹 1/𝑠/𝑝+min and
its maximum being 𝑠

𝑠+1 log𝐹
(
𝐹 1/𝑠

𝑝+min

)
when 𝜆𝑡 = 1. Hence, 𝑓 (𝑥𝑡) −

𝑠
𝑠+1 log𝐹

(
𝐹 1/𝑠

𝑝+min

)
≤ 𝑔(𝑋𝑡) ≤ 𝑓 (𝑥𝑡). □

Given that we have shown that 𝜆 grows quickly and stays at a
large value, we now show that the expected drift of the potential
𝑔(𝑋𝑡) is a positive constant whenever 𝜆 is at least 𝜆safe.

Lemma 3.6. Consider the self-adjusting (1, 𝜆) EA as in Theorem 3.1.

Then for every generation 𝑡 with 𝑓 (𝑥𝑡) < 𝑑 and 𝜆𝑡 ≥ 𝜆safe,

E (𝑔(𝑋𝑡+1) − 𝑔(𝑋𝑡) | 𝑋𝑡) ≥
1

2(𝑠 + 1)
for large enough 𝑛. This also holds when only considering improve-

ments that increase the fitness by 1.

Proof. We consider only 𝜆 ≥ 𝜆safe > 𝐹 , hence, by Lemma 2.8
in [17], for all 𝜆 ≥ 𝜆safe, E (𝑔(𝑋𝑡+1) − 𝑔(𝑋𝑡) | 𝑋𝑡) is at least(

Δ+
𝑥,𝜆
+ ℎ(𝜆/𝐹) − ℎ(𝜆𝐹 1/𝑠)

)
𝑝+
𝑥,𝜆
+ℎ(𝜆𝐹 1/𝑠)−ℎ(𝜆)−Δ−

𝑥,𝜆
𝑝−
𝑥,𝜆

. (2)

We first consider the case 𝜆𝑡 ≤ 1/𝑝+min as then 𝜆𝑡+1 ≤ 𝐹 1/𝑠/𝑝+min
and the first term in the maximum of ℎ(𝜆𝑡+1) is at least 1, yielding

ℎ(𝜆𝑡+1) = −
𝑠

𝑠 + 1

(
log𝐹

(
𝐹 1/𝑠

𝑝+min

)
− log𝐹 (𝜆𝑡+1)

)
< 0.

Hence, E
(
𝑔(𝑋𝑡+1) − 𝑔(𝑋𝑡) | 𝑋𝑡 , 𝜆𝑡 ≤ 1/𝑝+min

)
is at least(

Δ+
𝑥,𝜆
− 𝑠

𝑠 + 1

(
𝑠 + 1
𝑠

))
𝑝+
𝑥,𝜆
+ 𝑠

𝑠 + 1

(
1
𝑠

)
− Δ−

𝑥,𝜆
𝑝−
𝑥,𝜆

=
1

𝑠 + 1 +
(
Δ+
𝑥,𝜆
− 1

)
𝑝+
𝑥,𝜆
− Δ−

𝑥,𝜆
𝑝−
𝑥,𝜆

.

By definition Δ+
𝑥,𝜆
≥ 1, hence

E
(
𝑔(𝑋𝑡+1) − 𝑔(𝑋𝑡) | 𝑋𝑡 , 𝜆𝑡 ≤ 1/𝑝+min

)
≥ 1

𝑠 + 1 − Δ
−
𝑥,𝜆

𝑝−
𝑥,𝜆

.

By Lemma 2.3, 𝑝−
𝑥,𝜆𝑡

= (𝑝−𝑥)𝜆𝑡 ≤ 𝛾−𝜆𝑡 . Along with the trivial bound
Δ−
𝑥,𝜆
≤ 𝑑 , the right-hand side of the previous inequality is at least

1
𝑠 + 1 − 𝑑𝛾

−𝜆 .

Since 𝜆𝑡 ≥ 𝜆safe ≥ log𝛾 (2𝑑 (𝑠+1)) the second term is at most 1
2(𝑠+1) ,

thus E
(
𝑔(𝑋𝑡+1) − 𝑔(𝑋𝑡) | 𝑋𝑡 , 𝜆𝑡 ≤ 1/𝑝+min

)
≥ 1

2(𝑠+1) .
Finally, for the case 𝜆𝑡 > 1/𝑝+min, in an unsuccessful generation

the penalty term is capped, hence we only know that ℎ(𝜆𝐹 1/𝑠) ≥

800

GECCO ’22, July 9–13, 2022, Boston, MA, USA Mario Alejandro Hevia Fajardo and Dirk Sudholt

ℎ(𝜆) (which holds with equality if 𝜆𝑡 ≥ 𝐹 1/𝑠/𝑝+min). By Equation (2),
E

(
𝑔(𝑋𝑡+1) − 𝑔(𝑋𝑡) | 𝑋𝑡 , 𝜆𝑡 > 1/𝑝+min

)
is at least(

Δ+
𝑥,𝜆
+ ℎ(𝜆/𝐹) − ℎ(𝜆)

)
𝑝+
𝑥,𝜆
− Δ−

𝑥,𝜆
𝑝−
𝑥,𝜆

=

(
Δ+
𝑥,𝜆
− 𝑠

𝑠 + 1

)
𝑝+
𝑥,𝜆
− Δ−

𝑥,𝜆
𝑝−
𝑥,𝜆

.

By definition of Δ+
𝑥,𝜆

, Δ+
𝑥,𝜆
≥ 1, hence

E
(
𝑔(𝑋𝑡+1) − 𝑔(𝑋𝑡) | 𝑋𝑡 , 𝜆𝑡 ≤ 1/𝑝+min

)
≥

(
1

𝑠 + 1

)
𝑝+
𝑥,𝜆
− Δ−

𝑥,𝜆
𝑝−
𝑥,𝜆

.

𝜆𝑡 > 1/𝑝+min implies 𝑝+
𝑥,𝜆
≥ 1 −

(
1 − 𝑝+𝑥

)1/𝑝+min ≥ 1 − 1
𝑒 and by

Definition 2.2, 𝑝−
𝑥,𝜆

Δ−
𝑥,𝜆
≤ 𝑑𝛾−1/𝑝

+
min . Together,

E
(
𝑔(𝑋𝑡+1) − 𝑔(𝑋𝑡) | 𝑋𝑡 , 𝜆𝑡 ≤ 1/𝑝+min

)
≥

(
1

𝑠 + 1

) (
1 − 1

𝑒

)
− 𝑑𝛾−1/𝑝

+
min

=

(
1

𝑠 + 1

) (
1 − 1

𝑒

)
− 𝑜 (1) ≥ 1

2(𝑠 + 1)

where the penultimate step follows from 𝑑 ≤ 𝑛𝑜 (log𝑛) and 𝑝+min ≤
𝑝+max ≤ 𝑛−𝜀/2, which implies 𝛾−1/𝑝

+
min ≤ 𝛾−𝑛

𝜀/2
= 𝑛−Ω (𝑛

𝜀/2/log𝑛) .
The last inequality holds if 𝑛 is large enough. □

With the previous lemmas we are now able to prove Theorem 3.1.

Proof of Theorem 3.1. If 𝜆0 < 𝜆inc then by Lemma 3.2 in ex-
pected𝑂 (log 𝜆inc) generations 𝜆 will grow to 𝜆 ≥ 𝜆inc. Afterwards,
by Lemma 3.3, with probability 1 − 𝑛−Ω (log𝑛) , the offspring pop-
ulation size will be 𝜆 ≥ 𝜆safe in the next 𝑛𝑜 (log𝑛) generations.
Assuming in the following that this happens, we note that then the
drift bound from Lemma 3.6 is in force.

Now, similar to [16, 17] we bound the number of generations
to reach the global optimum using the potential 𝑔(𝑋𝑡). Lemma 3.6
shows that the potential has a positive constant drift whenever the
optimum has not been found, and by Lemma 3.5 if 𝑔(𝑋𝑡) = 𝑑 then
the optimum has been found. Therefore, we can bound the number
of generations to find a global optimum by the time it takes for
𝑔(𝑋𝑡) to reach 𝑑 .

To fit the perspective of the additive drift theorem [14] we switch
to the function𝑔(𝑋𝑡) := 𝑑 − 𝑔(𝑋𝑡) where𝑔(𝑋𝑡) = 0 implies𝑔(𝑋𝑡) =
𝑓 (𝑥𝑡) = 𝑑 . The initial value 𝑔(𝑋0) is at most 𝑑 + 𝑠

𝑠+1 log𝐹
(
𝐹 1/𝑠

𝑝+min

)
by

Lemma 3.5. Using Lemma 3.6 and the additive drift theorem, the
expected number of generations, assuming no failures, is at most

E (𝑇) ≤
𝑑 + 𝑠

𝑠+1 log𝐹
(
𝐹 1/𝑠

𝑝+min

)
1

2(𝑠+1)
= 2(𝑠 + 1) · 𝑑 +𝑂

(
log

(
1/𝑝+min

))
.

Finally, by Lemma 2.3 we have 𝑝+min ≥ 𝑛−𝑂 (𝑛) and thus E (𝑇) =
𝑂 (𝑑 +𝑛 log𝑛) in case of no failures. Since failures have a probability
of𝑛−Ω (log𝑛) over𝑛𝑜 (log𝑛) generations and𝑂 (𝑑+𝑛 log𝑛) = 𝑛𝑜 (log𝑛)

using the assumption 𝑑 + 1 = 𝑛𝑜 (log𝑛) , if we restart the proof
every time a failure happens, the expected number of repetitions
is 1 + 𝑛−Ω (log𝑛) and all additional costs can be absorbed in the
previous bounds. □

4 BOUNDING THE NUMBER OF EVALUATIONS
Now we consider the expected number of fitness evaluations and
give the following general result.

Theorem 4.1. Consider the self-adjusting (1, 𝜆) EA using any

mutation operator that ensures 𝑝+𝑥 > 0 for all non-optimal search

points 𝑥 . Let the update strength 𝐹 > 1 and the success rate 𝑠 > 0
be constants. Consider an arbitrary everywhere hard function 𝑓 with

𝑑 + 1 = 𝑛𝑜 (log𝑛) function values. Then for every initial search point

and every initial offspring population size 𝜆0 = 𝑂

(∑𝑑−1
𝑖=0

1
𝑠𝑖

)
the

expected number of evaluations to optimise 𝑓 is at most

𝑂

(
𝑑−1∑︁
𝑖=0

1
𝑠𝑖

)
.

The condition 𝑝+𝑥 > 0 is met by standard bit mutation and heavy-
tailed mutations. The term

∑𝑑−1
𝑖=0

1
𝑠𝑖

equals the fitness-level upper
bound for the (1+1) EA using the same mutation operator as the
considered self-adjusting (1, 𝜆) EA. A similar result to Theorem 4.1
was shown for the (elitist) self-adjusting (1+{2𝜆, 𝜆/2}) EA from [22].
Our result shows that the same bound also applies in the context
of non-elitism, if the fitness function is everywhere hard.

The main proof idea is that given that 𝜆 maintains a large value
with high probability throughout the optimisation, the algorithm
with high probability behaves as an elitist algorithm. This is shown
in the next lemma, adapted from Lemma 3.7 in [17].

Lemma 4.2. Consider the self-adjusting (1, 𝜆) EA as in Theorem 4.1.

Let 𝑇 be the first generation in which the optimum is found. Then

for all 𝑡 ≤ 𝑇 in which 𝜆𝑡 ≥ 𝜆safe, we have 𝑓 (𝑥𝑡+1) ≥ 𝑓 (𝑥𝑡) with
probability 1 −𝑂 (1/(𝑛 log𝑛)).

Proof. Let 𝐸𝑡 denote the event that 𝜆𝑡 < 𝜆safe or 𝑓 (𝑥𝑡+1) ≥
𝑓 (𝑥𝑡). Hence we only need to consider 𝜆𝑡 ≥ 𝜆safe. We note that

𝜆safe = 4max
(
log𝛾 (2𝑑 (𝑠 + 1)), log𝛾 (𝑛 log𝑛)

)
≥ 2

(
log𝛾 (2𝑑 (𝑠 + 1)) + log𝛾 (𝑛 log𝑛)

)
.

Then by Lemma 2.3 we have

Pr
(
𝐸𝑡

)
≤ 𝛾−𝜆𝑡 ≤ 𝛾−2

(
log𝛾 (2𝑑 (𝑠+1))+log𝛾 (𝑛 log𝑛)

)
=

1
(2𝑑 (𝑠 + 1)𝑛 log𝑛)2

.

By a union bound, the probability that this happens in the first 𝑇
generations is at most∑∞

𝑡=1 Pr (𝑇 = 𝑡) · 𝑡
(2𝑑 (𝑠 + 1)𝑛 log𝑛)2

=
E (𝑇)

(2𝑑 (𝑠 + 1)𝑛 log𝑛)2
.

By Theorem 3.1, this is

𝑂

(
𝑑 + 𝑛 log𝑛
(𝑑𝑛 log𝑛)2

)
= 𝑂

(
1

𝑑 (𝑛 log𝑛)2
+ 1
𝑑2𝑛 log𝑛

)
= 𝑂

(
1

𝑛 log𝑛

)
. □

If the algorithm behaves as an elitist algorithm with high proba-
bility, we can bound its expected optimisation time by the expected
optimisation time of its elitist version, i. e. a (1 + {𝐹 1/𝑠𝜆, 𝜆/𝐹 }) EA.
This argument has already been used in [17] for the function
OneMax, and the expected optimisation time of the elitist (1 +
{𝐹 1/𝑠𝜆, 𝜆/𝐹 }) EA was bounded from above in [17, Section 3.2.3].

801

Hard Problems are Easier for Success-based Parameter Control GECCO ’22, July 9–13, 2022, Boston, MA, USA

Inspecting the proofs, we find that the arguments (specifically,
Lemma 3.12 and Lemma 3.13 in [17]) apply to arbitrary fitness func-
tions. Consequently, the proof of Theorem 3.10 in [17] yields the
following more general upper bound.

Theorem 4.3 (Generalising Theorem 3.10 in [17]). Consider
the elitist (1 + {𝐹 1/𝑠𝜆, 𝜆/𝐹 }) EA on any function with 𝑑 + 1 fitness
values, starting with a fitness of 𝑓 (𝑥0) ≥ 𝑎. For every integer 𝑏 ≤ 𝑑 ,

the expected number of evaluations 𝑇 (𝑎, 𝑏) to reach a fitness of at

least 𝑏 is at most

𝑇 (𝑎, 𝑏) ≤ 𝜆0 ·
𝐹

1 − 𝐹 +
(
1
𝑒
+ 1 − 𝐹−1/𝑠

ln(𝐹 1/𝑠)

)
· 𝐹

𝑠+1
𝑠 − 1
𝐹 − 1

𝑏−1∑︁
𝑖=𝑎

1
𝑠𝑖
.

Note that 𝑇 (𝑎, 𝑏) ≤ 𝑂

(
𝜆0 +

∑𝑏−1
𝑖=𝑎

1
𝑠𝑖

)
. The following lemma

bounds the expectation of 𝜆 at each step 𝑡 in order to deal with
the case where the self-adjusting (1, 𝜆) EA does not behave as an
elitist algorithm. It follows from the proof of Lemma 3.17 in [17] for
OneMax when replacing the specific lower bound of 𝑛−𝑖

𝑒𝑛 on the
success probability on OneMax by the general lower bound 𝑝+min.

Lemma 4.4. Consider the self-adjusting (1, 𝜆) EA as in Theorem 4.1.

The expected value of 𝜆 at time 𝑡 is

E (𝜆𝑡 | 𝜆0) ≤ ⌊𝜆0/𝐹 𝑡 ⌋ +
1

𝑝+min
·
(
𝐹 1/𝑠 + 𝐹 1/𝑠

ln 𝐹

)
.

Now we are in a position to prove Theorem 4.1.

Proof of Theorem 4.1. By Lemma 3.2, 𝜆 will grow to 𝜆inc using
𝑂 (𝜆inc log 𝜆inc) = 𝑜 (

√
𝑛 log(𝑛)) expected evaluations. Afterwards,

by Lemma 3.3 the offspring population size will maintain a value
of at least 𝜆safe with probability 1 − 𝑛−Ω (log𝑛) throughout the opti-
misation and by Lemma 4.2 with probability 1 −𝑂 (1/(𝑛 log𝑛)) the
algorithm will behave as an elitist algorithm until the optimum is
found. Considering the above rare, undesired events as failures, we
define E (𝑇 ∗) be the expected time of a run with 𝜆0 = 𝑂

(∑𝑑−1
𝑖=0

1
𝑠𝑖

)
until either a global optimum is found or a failure occurs. As long
as no failure occurs, Theorem 4.3 can be applied with 𝑎 := 0 and
thus we obtain E (𝑇 ∗) = 𝑂

(∑𝑑−1
𝑖=0

1
𝑠𝑖

)
.

Since failures have a probability of𝑂 (1/(𝑛 log𝑛)), we can restart
our arguments whenever a failure happens and in expectation there
would be at most 1 + 𝑂 (1/(𝑛 log𝑛)) attempts. Arguing as in [18,
proof of Theorem 3.5], in each restart of the analysis 𝜆0 would take
the 𝜆-value at the time of a failure, denoted as 𝜆fail. By Lemma 4.4,

E (𝜆fail) ≤ 𝜆0 +𝑂
(

1
𝑝+min

)
≤ 𝑂

(
𝑑−1∑︁
𝑖=0

1
𝑠𝑖

)
and this term, multiplied by 𝑂 (1/(𝑛 log𝑛)), can easily be absorbed
in our claimed upper bound. □

5 BOUNDS ON UNIMODAL FUNCTIONS
We now show how to apply Theorems 3.1 and 4.1 to obtain novel
bounds on the expected optimisation time of the self-adjusting
(1, 𝜆) EA on everywhere hard unimodal functions, the benchmark
function LeadingOnes and a new function class OneMaxBlocks
that allows us to vary the difficulty of the easiest fitness levels.

Definition 5.1. Let 𝑘, 𝑛 ∈ N such that 𝑛/𝑘 ∈ N, then for 𝑥 =

(𝑥1 . . . 𝑥𝑛) ∈ {0, 1}𝑛 we define:
• LeadingOnes(𝑥) := ∑𝑛

𝑖=1
∏𝑖

𝑗=1 𝑥 𝑗 ,

• OneMaxBlocks(𝑥) := ∑ ⌊𝑛/𝑘 ⌋
𝑗=1

(∏(𝑗−1)𝑘
𝑖=1 𝑥𝑖

)
·∑𝑗𝑘

𝑖=(𝑗−1)𝑘+1 𝑥𝑖 ,
• a fitness function is called unimodal if every non-optimal search
point 𝑥 has a Hamming neighbour (a search point that only
differs in one bit from 𝑥) with strictly larger fitness.

Recall that LeadingOnes returns the number of 1-bits in the
longest prefix that only contains ones. The proposed function class,
OneMaxBlocks, has a similar structure. It is comprised of blocks of
𝑘 bits. A block is complete if it only contains 1-bits and incomplete

otherwise. The function returns the number of 1-bits in the longest
prefix of completed blocks plus the number of 1-bits in the first
incomplete block. Evolutionary algorithms typically optimise this
function by optimising each OneMax-like block of size 𝑘 from left
to right until the global optimum 1𝑛 is reached. We can tune the
maximum success probability 𝑝+max by assigning different values
to 𝑘 . If 𝑘 = 1 the function equals LeadingOnes where 𝑝+max =

Θ(1/𝑛). Increasing 𝑘 increases the maximum success probability. If
𝑘 = 𝑛 the function equals OneMax and 𝑝+max = Θ(1).

Theorem 5.2. Let 𝑠 > 0 and 𝐹 > 1 be constants. The expected

number of generations and evaluations of the self-adjusting (1, 𝜆) EA
using standard bit mutation with mutation probability 𝜒/𝑛, 𝜒 = Θ(1),
or heavy-tailed mutations with constant 𝛽 > 1 is at most

(1) 𝑂 (𝑑) expected generations and𝑂 (𝑑𝑛) expected evaluations on
all unimodal functions with 𝑑 + 1 ≥ log𝑛 fitness values that

are everywhere hard for the considered algorithm,

(2) 𝑂 (𝑛) expected generations and𝑂 (𝑛2) expected evaluations on
LeadingOnes , and

(3) 𝑂 (𝑛) expected generations and 𝑂
(
𝑛2 log𝑘

𝑘

)
expected evalua-

tions on OneMaxBlocks with 1 < 𝑘 ≤ 𝑛1−𝜀 for some constant

0 < 𝜀 < 1 and, additionally, 𝑘 ≤ 𝑛𝛽−1−𝜀 if heavy-tailed

mutations are used.

Proof. The set of everywhere hard unimodal functions by defi-
nition meet the conditions in Definition 2.2, therefore we can apply
Theorems 3.1 and 4.1 directly. We only need to bound 𝑝+min. Given
that every search point has a strictly better Hamming neighbour,
the success probability of all fitness levels is at least as large as
the probability of flipping only one specific bit. For standard bit
mutations with mutation probability 𝜒/𝑛, this is at least

𝑝+min ≥
𝜒

𝑛

(
1 − 𝜒

𝑛

)𝑛−1
≥ 𝜒

𝑒𝜒𝑛
·
(
1 − 𝜒

𝑛

)1−𝜒
= Ω(1/𝑛) .

For heavy-tailed mutations we also have 𝑝+min = Ω(1/𝑛) as there is
a constant probability of choosing a mutation rate of 1/𝑛. Applying
Theorems 3.1 and 4.1 yields 𝑂 (𝑑 + log𝑛) = 𝑂 (𝑑) generations and
𝑂 (𝑑𝑛) evaluations in expectation.

For the statement on LeadingOnes we need to show that the
function is everywhere hard for the considered algorithms. A neces-
sary condition for an offspring to be better than the parent is to flip
the leftmost 0-bit, hence the success probability of standard bit mu-
tation on all fitness levels is bounded by 𝑝+𝑥 ≤

𝜒
𝑛 and LeadingOnes

meets the conditions of an everywhere hard unimodal function.
Thus, it is covered by the previous statement with 𝑑 := 𝑛. For

802

GECCO ’22, July 9–13, 2022, Boston, MA, USA Mario Alejandro Hevia Fajardo and Dirk Sudholt

heavy-tailed mutations, a much larger mutation rate might be used,
hence we need to be more careful. Heavy-tailed mutation chooses
a mutation probability 𝜒∗/𝑛 according to a power-law distribution
with parameter 𝛽 , truncated at 𝑛/2. The probability of choosing a
certain mutation rate 𝜒/𝑛 is

Pr
(
𝜒∗ = 𝜒

)
=

𝜒−𝛽∑𝑛/2
𝑗=1 𝑗

−𝛽
≤ 𝜒−𝛽

𝜁 (𝛽) − 𝜌 ,

where the inequality is taken from [13] and 𝜁 (𝛽) is the Riemann
zeta function 𝜁 evaluated at 𝛽 and 𝜌 =

𝛽

𝛽−1
(
𝑛
2
)−𝛽+1

= 𝑜 (1). Given
a mutation probability of 𝜒/𝑛 (where 𝜒 is no longer restricted to a
constant), the probability of flipping the first 0-bit is 𝜒/𝑛. Hence,

𝑝+ ≤
𝑛/2∑︁
𝜒=1

𝜒−𝛽

𝜁 (𝛽) − 𝜌 ·
𝜒

𝑛
=

∑𝑛/2
𝜒=1 𝜒

1−𝛽

𝑛(𝜁 (𝛽) − 𝜌) = Θ

(
1
𝑛

)
·
𝑛/2∑︁
𝜒=1

𝜒1−𝛽 .

Since 𝛽 > 1, 𝜒1−𝛽 is strictly decreasing with 𝜒 and, using 𝜒1−𝛽 ≤∫ 𝜒

𝜒−1 𝑥
1−𝛽 d𝑥 , we can bound the sum by an integral:

𝑛/2∑︁
𝜒=1

𝜒1−𝛽 ≤
∫ 𝑛/2

0
𝜒1−𝛽 d𝜒 =

(𝑛/2)2−𝛽
2 − 𝛽 .

Together, we get

𝑝+ ≤ Θ

(
1
𝑛

)
· (𝑛/2)

2−𝛽

2 − 𝛽 = 𝑂 (𝑛1−𝛽)

fitting the definition of everywhere hardness for 𝜀 := 𝛽 − 1 > 0.
For OneMaxBlocks, a search point of fitness 𝑖 < 𝑛 has 𝑖 mod 𝑘

1-bits in its first incomplete block. All non-optimal search points
can only be improved by flipping at least one 0-bit in the first
incomplete block. Hence, a necessary condition for an offspring to
be better than the parent is to flip one of the 𝑘 − (𝑖 mod 𝑘) ≤ 𝑘

0-bits in the first incomplete block. Hence, all success probabilities
can be bounded by 𝑘 times the bound on the success probability for
LeadingOnes. Thus, for all non-optimal 𝑥 , 𝑝+𝑥 ≤ 𝜒 · 𝑘/𝑛 ≤ 𝜒𝑛−𝜀

for standard bit mutations using the assumption 𝑘 ≤ 𝑛1−𝜀 and
𝑝+𝑥 ≤ 𝑂 (𝑘 · 𝑛1−𝛽) = 𝑂 (𝑛−𝜀) for heavy-tailed mutation using the
assumption 𝑘 ≤ 𝑛𝛽−1−𝜀 . For both operators,OneMaxBlocksmeets
the conditions of an everywhere hard unimodal function.

A sufficient condition for an offspring to be better than its parent
of fitness 𝑖 is to flip only one of the 𝑘 − (𝑖 mod 𝑘) 0-bits in the first
incomplete block. Standard bit mutations do this with probability

𝑠𝑖 ≥
𝜒 (𝑘 − (𝑖 mod 𝑘))

𝑛

(
1 − 𝜒

𝑛

)𝑛−1
.

By Theorem 3.1, the self-adjusting (1, 𝜆) EA optimises One-
MaxBlocks with 𝑘 ≤ 𝑛1−𝜀 in 𝑂 (𝑛) generations. By Theorem 4.1
the expected number of evaluations is at most

𝑂
©«

𝑛∑︁
𝑖=1

(
1 − 𝜒

𝑛

)−𝑛+1
𝑛

𝜒 (𝑘 − (𝑖 mod 𝑘))
ª®®¬ = 𝑂

©«𝑛𝑘 ·
𝑘∑︁
𝑗=1

𝑛

𝜒 𝑗

ª®¬ = 𝑂

(
𝑛2 log𝑘

𝑘

)
.

If 𝑘 = 1 OneMaxBlocks equals LeadingOnes and the expected
number of evaluations is𝑂 (𝑛2). For heavy-tailed mutations a muta-
tion rate of 1/𝑛 is used with constant probability, hence the above
asymptotic probability bounds apply as well. □

6 VERY SMALL MUTATION RATES MAKE ALL
FUNCTIONS EVERYWHERE HARD

In this short section we remark that, if the self-adjusting (1, 𝜆) EA
uses standard bit mutation with mutation rate 1/𝑛1+𝜀 for some
constant 0 < 𝜀 then all functions are everywhere hard since any
mutation will create a copy of the parent with probability at least
1 − 𝑛−𝜀 and thus the probability of an offspring improving the fit-
ness is at most 𝑝+max ≤ 𝑛−𝜀 . Thus, functions like OneMax, where
large constant values of 𝑠 result in exponential runtimes (Theo-
rem 4.1 and 4.4 in [17]), can be solved in polynomial expected time
for arbitrary constant 𝑠 . For example, the self-adjusting (1, 𝜆) EA
with every constant 𝑠 > 1 can solve OneMax in 𝑂 (𝑛) expected
generations and 𝑂 (𝑛1+𝜀 log𝑛) expected evaluations.

Corollary 6.1. Let 0 < 𝜀 < 1, the update strength 𝐹 > 1
and the success rate 𝑠 > 0 be constants. For every function 𝑓 with

𝑑 + 1 = 𝑛𝑜 (log𝑛) fitness levels, the self-adjusting (1, 𝜆) EA us-

ing standard bit mutation with mutation rate 1/𝑛1+𝜀 optimises 𝑓

in 𝑂

(
𝑑 + log

(
1/𝑝+min

))
expected generations and 𝑂

(∑𝑑−1
𝑖=1

1
𝑠𝑖

)
ex-

pected evaluations.

The conclusion is that making an algorithm less efficient (in the
sense of introducing large self-loops) can improve performance
as the algorithm shows a more stable search behaviour. Similar
observations were made before for the (1, 𝜆) EA with fixed 𝜆 [30]
and, in a wider sense, in evolution with partial information [4].

7 CONCLUSIONS
We have shown that the non-elitist self-adjusting (1, 𝜆) EA is not
affected by the choice of the success rate (from positive constants)
if the problem in hand is everywhere hard, that is, improvements
are always found with a probability of at most 𝑛−𝜀 . This is in stark
contrast to functions with easy slopes like OneMax, on which the
self-adjusting (1, 𝜆) EA takes exponential time if 𝑠 is too large, since
frequent improvements drive down the population size.

Our analysis extends previous work [16, 18] on OneMax and
Cliff to all everywhere hard functions. Moreover, our results apply
to both standard bit mutation as well as heavy-tailed mutations. The
expected number of evaluations is bounded by the same fitness-level
upper bound as known for the (1 + 1) EA using the same mutation
operator. Self-adjusting the offspring population size drastically
reduces the number of generations to just𝑂 (𝑑+log(1/𝑝+min)), that is,
roughly to the number of fitness values, improving and generalising
previous results [22]. As a byproduct of our analysis, we have also
shown an upper bound for the expected number of evaluations of
the elitist (1 + {𝐹 1/𝑠𝜆, 𝜆/𝐹 }) EA on arbitrary fitness functions.

Although our results show that the self-adjusting (1, 𝜆) EA is
robust with respect to the choice of its hyper-parameters on hard
functions, it remains an open problem how to self-adjust the off-
spring population size 𝜆 for the (1, 𝜆) EA in such a way that the
algorithm performs well on both easy and hard functions (indepen-
dent of the choice of its hyper-parameters) without worsening the
runtime guarantees obtained for the multimodal function Cliff.

ACKNOWLEDGMENTS
This research has been supported by CONACYT under the grant
no. 739621 and registration no. 843375.

803

Hard Problems are Easier for Success-based Parameter Control GECCO ’22, July 9–13, 2022, Boston, MA, USA

REFERENCES
[1] Golnaz Badkobeh, Per Kristian Lehre, and Dirk Sudholt. 2014. Unbiased Black-

Box Complexity of Parallel Search. In Proceedings of Parallel Problem Solving from

Nature – PPSN XIII. Springer, 892–901.
[2] Süntje Böttcher, Benjamin Doerr, and Frank Neumann. 2010. Optimal Fixed and

Adaptive Mutation Rates for the LeadingOnes Problem. In Proceedings of Parallel

Problem Solving from Nature – PPSN XI, Vol. 6238. Springer, 1–10.
[3] Dogan Corus, Pietro S. Oliveto, and Donya Yazdani. 2020. When Hypermuta-

tions and Ageing Enable Artificial Immune Systems to Outperform Evolutionary
Algorithms. Theoretical Computer Science 832 (2020), 166–185.

[4] Duc-Cuong Dang and Per Kristian Lehre. 2016. Runtime Analysis of Non-elitist
Populations: From Classical Optimisation to Partial Information. Algorithmica

75 (2016), 428–461.
[5] Benjamin Doerr. 2020. Probabilistic Tools for the Analysis of Randomized Opti-

mization Heuristics. Springer, 1–87.
[6] Benjamin Doerr and Carola Doerr. 2018. Optimal Static and Self-Adjusting

Parameter Choices for the (1+(𝜆,𝜆)) Genetic Algorithm. Algorithmica 80, 5 (2018),
1658–1709.

[7] Benjamin Doerr and Carola Doerr. 2020. Theory of Parameter Control for Discrete

Black-Box Optimization: Provable Performance Gains Through Dynamic Parameter

Choices. Springer, 271–321.
[8] Benjamin Doerr, Carola Doerr, and Franziska Ebel. 2015. From Black-Box Com-

plexity to Designing New Genetic Algorithms. In Theoretical Computer Science,
Vol. 567. 87–104.

[9] Benjamin Doerr, Carola Doerr, and Timo Kötzing. 2018. Static and Self-Adjusting
Mutation Strengths for Multi-valued Decision Variables. Algorithmica 80, 5 (2018),
1732–1768.

[10] Benjamin Doerr, Carola Doerr, and Johannes Lengler. 2021. Self-Adjusting Mu-
tation Rates with Provably Optimal Success Rules. Algorithmica 83, 10 (2021),
3108–3147.

[11] Benjamin Doerr, Carola Doerr, and Jing Yang. 2020. Optimal Parameter Choices
via Precise Black-Box Analysis. Theoretical Computer Science 801 (2020), 1 – 34.

[12] Benjamin Doerr, Christian Gießen, Carsten Witt, and Jing Yang. 2019. The (1+ 𝜆)
Evolutionary Algorithm with Self-Adjusting Mutation Rate. Algorithmica 81, 2
(2019), 593–631.

[13] Benjamin Doerr, Huu Phuoc Le, Régis Makhmara, and Ta Duy Nguyen. 2017. Fast
Genetic Algorithms. In Proceedings of the Genetic and Evolutionary Computation

Conference (GECCO ’17). ACM, 777–784.
[14] Jun He and Xin Yao. 2004. A Study of Drift Analysis for Estimating Computation

Time of Evolutionary algorithms. Natural Computing 3, 1 (2004), 21–35.
[15] Mario Alejandro Hevia Fajardo and Dirk Sudholt. 2020. On the Choice of the

Parameter Control Mechanism in the (1+(𝜆, 𝜆)) Genetic Algorithm. In Proceedings
of the Genetic and Evolutionary Computation (GECCO ’20). ACM, 832–840.

[16] Mario Alejandro Hevia Fajardo and Dirk Sudholt. 2021. Self-Adjusting Offspring
Population Sizes Outperform Fixed Parameters on the Cliff Function. In Proceed-

ings of the 16th Workshop on Foundations of Genetic Algorithms (FOGA ’21). ACM,

New York, NY, USA, 5:1–5:15.
[17] Mario Alejandro Hevia Fajardo and Dirk Sudholt. 2021. Self-Adjusting Population

Sizes for Non-Elitist Evolutionary Algorithms: Why Success Rates Matter. ArXiv
e-prints (2021).

[18] Mario Alejandro Hevia Fajardo and Dirk Sudholt. 2021. Self-Adjusting Popula-
tion Sizes for Non-Elitist Evolutionary Algorithms: Why Success Rates Matter.
In Proceedings of the Genetic and Evolutionary Computation Conference. ACM,
1151–1159.

[19] Jens Jägersküpper and Tobias Storch. 2007. When the Plus Strategy Outperforms
the Comma Strategy and When Not. In Proceedings of the IEEE Symposium on

Foundations of Computational Intelligence, FOCI 2007. IEEE, 25–32.
[20] Stefan Kern, Sibylle D. Müller, Nikolaus Hansen, Dirk Büche, Jiri Ocenasek, and

Petros Koumoutsakos. 2004. Learning Probability Distributions in Continuous
Evolutionary Algorithms – a Comparative Review. Natural Computing 3, 1 (2004),
77–112.

[21] Timo Kötzing and Martin S. Krejca. 2019. First-hitting times under drift. Theoret-
ical Computer Science 796 (2019), 51–69.

[22] Jörg Lässig and Dirk Sudholt. 2011. Adaptive Population Models for Offspring
Populations and Parallel Evolutionary Algorithms. In Proceedings of the 11th

Workshop on Foundations of Genetic Algorithms (FOGA ’11). ACM, 181–192.
[23] Per Kristian Lehre and Dirk Sudholt. 2020. Parallel Black-Box Complexity with

Tail Bounds. IEEE Transactions on Evolutionary Computation 24, 6 (2020), 1010–
1024.

[24] Andrei Lissovoi, Pietro S. Oliveto, and John Alasdair Warwicker. 2019. On
the Time Complexity of Algorithm Selection Hyper-Heuristics for Multimodal
Optimisation. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 33. 2322–2329.

[25] Andrea Mambrini and Dirk Sudholt. 2015. Design and Analysis of Schemes for
Adapting Migration Intervals in Parallel Evolutionary Algorithms. Evolutionary
Computation 23, 4 (2015), 559–582.

[26] Tiago Paixão, Jorge Pérez Heredia, Dirk Sudholt, and Barbora Trubenová. 2017.
Towards a Runtime Comparison of Natural and Artificial Evolution. Algorithmica

78, 2 (2017), 681–713.
[27] Amirhossein Rajabi and Carsten Witt. 2020. Self-Adjusting Evolutionary Algo-

rithms for Multimodal Optimization. In Proceedings of the Genetic and Evolution-

ary Computation Conference (GECCO ’20). ACM, 1314–1322.
[28] Amirhossein Rajabi and Carsten Witt. 2021. Stagnation Detection with Random-

ized Local Search. In Evolutionary Computation in Combinatorial Optimization.
Springer, 152–168.

[29] Ingo Rechenberg. 1973. Evolutionsstrategie. Ph.D. Dissertation.
[30] Jonathan E. Rowe and Dirk Sudholt. 2014. The Choice of the Offspring Population

Size in the (1, 𝜆) Evolutionary Algorithm. Theoretical Computer Science 545 (2014),
20–38.

804

	Abstract
	1 Introduction
	2 Preliminaries
	3 Bounding the number of generations
	4 Bounding the number of evaluations
	5 Bounds on unimodal functions
	6 Very Small Mutation Rates Make All Functions Everywhere Hard
	7 Conclusions
	Acknowledgments
	References

