
Analysis of a
Pairwise Dominance Coevolutionary Algorithm

And DefendIt
Per Kristian Lehre∗

Mario Hevia Fajardo
p.k.lehre@bham.ac.uk

m.heviafajardo@bham.ac.uk
University of Birmingham, UK

Jamal Toutouh
jamal@uma.es

University of Malaga, Spain

Erik Hemberg∗

Una-May O’Reilly
erik.hemberg@gmail.com
unamay@csail.mit.edu

MIT, USA

ABSTRACT

While competitive coevolutionary algorithms are ideally suited to

model adversarial dynamics, their complexity makes it di�cult to

understand what is happening when they execute. To achieve better

clarity, we introduce a game named DefendIt and explore a pre-

viously developed pairwise dominance coevolutionary algorithm

named PDCoEA. We devise a methodology for consistent algorithm

comparison, then use it to empirically study the impact of popula-

tion size, the impact of relative budget limits between the defender

and attacker, and the impact of mutation rates on the dynamics

and payo�s. Our methodology provides reliable comparisons and

records of run and multi-run dynamics. Our supplementary mate-

rial also o�ers enticing and detailed animations of a pair of players’

gamemoves over the course of a game of millions of moves matched

to the same run’s populations’ payo�s.

CCS CONCEPTS

• Theory of computation → Evolutionary algorithms; Adver-

sary models; • Security and privacy → Vulnerability manage-

ment.

KEYWORDS

co-evolution, cyber security, evolutionary algorithms

ACM Reference Format:

Per Kristian Lehre, Mario Hevia Fajardo, Jamal Toutouh, Erik Hemberg,

and Una-May O’Reilly. 2023. Analysis of a Pairwise Dominance Coevolu-

tionary Algorithm And DefendIt. In Genetic and Evolutionary Computation

Conference (GECCO ’23), July 15–19, 2023, Lisbon, Portugal. ACM, New York,

NY, USA, 12 pages. https://doi.org/10.1145/3583131.3590411

1 INTRODUCTION

Security scenarios frequently feature adversarial behavior where a

defensive side must repel attacks. The evolving dynamics of such

two-sided scenarios quickly become complicated when each side

∗Corresponding authors.

is able to adapt using the feedback from competitions and when

a scenario is comprised of multiple defensive and o�ensive adver-

saries that mix through competitions among each other. Algorithms

can e�ectively express these salient features of security scenarios,

allowing modeling and simulation to help understand them bet-

ter. For example, competitive coevolutionary algorithms (CCAs)

have competing populations that map to the multiple adversaries

of security scenarios, such as a multiple di�erent organized crime

groups attempting to compromise the computer network of a �-

nancial institution. They set up and evaluate pairwise competitions

and they genotypically vary population members based on �tness -

a means of modeling the collection of feedback and its in�uence

on adaptation of the adversaries. They also have selection that

mimics the proliferation of successful behavior over less success-

ful behavior. However, the aspects of the CCA that mimic these

security scenarios generate enough complexity to make the algo-

rithms as intractable for sound empirical or theoretical analysis as

the security scenarios themselves. In addition to stochasticity and

population-based aspects of evolutionary algorithms, CCAs have

unique aspects including relativistic �tness scoring and the interac-

tions of two populations in the context of two-player competitions.

In this contribution, to gainmore clarity, we combine a new game,

DefendIt, that is simple to describe but complex in behavior with a

previously theoretically analyzed CCA named PDCoEA [16] (see

in Section 3.1, Algorithm 1). Consider the two player game, named

FlipIt [26], between an attacker and defender with each player

being able to move or not move (coded as one or zero respectively)

at each step in a time sequence. The environment consists of a

resource under ownership of either the attacker or defender with

the defender initially being the owner. A move is an attempt to

take or retain ownership of a resource. Players have no access

to each other’s moves at any time, nor any feedback during the

game. Accordingly, at the beginning of a game, each player states

a strategy which is a series of moves (and non-moves) to be taken

in sequence. The sequence then is stepped forward and moves are

played whenever at least one player has speci�ed them to be taken.

When there are no moves at a time step, resource ownership does

not change. When only one player moves, that player assumes or

retains ownership of the resource. When both players move, the

ownership does not change. At the end of the sequence of steps,

players are awarded a payo� proportional to the duration they were

owners of the resource. The objective of each player is to maximize

its ownership duration while minimizing its total move cost. This

is illustrated in Figure 1.

1027

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions
from Permissions@acm.org.
GECCO '23, July 15–19, 2023, Lisbon, Portugal
© 2023 Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
ACM ISBN 979-8-4007-0119-1/23/07…$15.00
https://doi.org/10.1145/3583131.3590411

https://orcid.org/1234-5678-9012
https://orcid.org/1234-5678-9012
https://orcid.org/1234-5678-9012
https://doi.org/10.1145/3583131.3590411
https://doi.org/10.1145/3583131.3590411
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3583131.3590411&domain=pdf&date_stamp=2023-07-12

GECCO ’23, July 15–19, 2023, Lisbon, Portugal Lehre, et al.

Figure 1: FlipIt or equivalently a round of DefendIt on a single resource. Ini-
tially, the resource is held by the defender. At time step 1, both the defender
and the attacker attempt to acquire the resource, and ownership remains with
the defender. At time step 4, the attacker acquires the resource. The defender
re-acquires the resource at time step 6 and keeps it until time step 9 when the
attacker regains ownership. The resource changes hand a �nal time at time
step 11. At the end of the game, the defender has owned the resource for 8
time steps, while the attacker has owned it for 4 time steps.

The game we study in this contribution, DefendIt, follows from

FlipIt, making FlipIt more complex in two respects, e.g. contesting

multiple devices in a heterogeneous network with �nite attack and

defense resources. DefendIt has multiple resources with indepen-

dent move costs. Total payo� is the summed ownership payo�s of

each resource. Second, DefendIt also introduces budgets for both

players. These budgets are taken into account after all moves have

been played and ownership durations have been determined. If

the total cost of a player’s moves has exceeded their budget, their

payo� is docked a penalty. This penalty is equivalent to the number

of moves made. We describe DefendIt formally in Section 3.2 and

analyze its hardness in Section 4.

A coevolutionary algorithm is ideal to model and study DefendIt

and, vice versa, DefendIt’s move costs, multiple resources, and bud-

gets are ideal parameters with which to study coevolution.

2 RELATED WORK

Biological coevolution refers to the in�uences two or more species

exert on each other’s evolution [23]. A seminal paper on reciprocal

relationships between insects and plants coined “coevolution” [7].

Coevolution can be cooperative, i.e., mutual bene�t, or competi-

tive, i.e., negative interactions arising from constrained and shared

resources or from predator-prey relationships.

Well known to the reader, an Evolutionary Algorithm (EA) typi-

cally evolves individual solutions, e.g., �xed length bit strings as in

Genetic Algorithms (GAs) [10] using an a-priori de�ned �tness func-

tion to evaluate an individual’s quality. In contrast, coevolutionary

algorithms calculate an individual’s �tness based on its interactions

with other individuals or a dynamic environment allowing them to

mimic coupled natural species-to-species interactions.

This contribution attempts to extend the insightful body of prior

work studying and exploiting coevolutionary algorithms [2, 12,

14, 19, 21–24]. It focuses on Competitive Coevolutionary Algo-

rithms (CCAs). In a basic CCA at each generation an individual is

assigned a �tness score derived from some function of its perfor-

mance outcomes in its competitions. E.g., the function can sum the

performance outcomes or use the average, maximum, minimum,

or median outcome [3]. Variations of the CCA have been de�ned

for speci�c problem domains, e.g., [1, 4, 9, 17, 18, 25].

The dynamics of CCAs are di�cult to analyze because their

�tness evaluation is derived interactively, [22]. E�ectively an indi-

vidual’s score (or payo�s in the case of DefendIt) is a sample-based

estimate of their performance where the samples are drawn from

the opposing population which itself is evolving. We introduce a

methodology in Section 5 where samples from multiple runs, col-

lected at the same time points in evolution are used to estimate

�tness. This decreases the bias of the estimate from the run where

the individual is evolving.

Di�erent competitive games or simpli�ed problems have been

studied [3, 8, 13, 14]. As stated in the introduction, DefendIt is in-

spired by FlipIt. FlipIt was introduced in 2012 in a cryptographic

setting by [26]. It was originally described as a game of “Stealthy

Takeover” because it models “situations in which an attacker pe-

riodically compromises a system or critical resource completely,

learns all its secret information and is not immediately detected by

the system owner or defender.” DefendIt is motivated by a more re-

cent application of CCAs, that of modeling security scenarios such

as those seen in cyber-networks, information and disinformation

proliferation, and regulatory environments, e.g. such as in taxation

where non-compliance competes with auditing [11, 12, 21].

There is a nascent body of theoretical analysis of coevolution-

ary algorithms. Relevant to this contribution is the topic of error

thresholds, a phenomenon �rst studied in molecular biology [15, 20].

An error threshold is an essential characteristic of a non-elitist

evolutionary algorithm. Informally, the threshold describes how

the performance of the algorithm suddenly degrades when the

mutation rate is increased beyond a certain point which depends

on the selective pressure. For traditional non-elitist evolutionary

algorithms which use selection and bitwise mutation applied to

optimization on the Boolean hypercube, this threshold occurs when

each bit is �ipped with probability j/= ≈ ln(U0)/=, where U0 is the
reproductive rate of the selection mechanism (expected number

of o�spring of the �ttest individual), and = is the bitstring length.

Mutation rates above this threshold lead to exponentially large

runtime on problems with at most a polynomial number of global

optima (Theorem 4 in [15]), while mutation rates below this thresh-

old lead to polynomial expected runtime assuming some additional

algorithmic and problem conditions are met (Theorem 1 in [5]).

Error thresholds were recently documented in coevolutionary

algorithms. Informally, for any su�ciently small subset � × � of

the search space, the PDCoEA (Algorithm 1 in this paper) with

bitwise mutation probability above ln(2)/= needs exponential time

to sample any point in�×� with overwhelmingly high probability.

For the formal statement, see Theorem 14 in [16].

3 PRELIMINARIES

We use the following notational conventions. For any = ∈ N, we
write [=] := {1, . . . , =}. Given a set - and a function 5 : - → R,
we let argmaxG∈- 5 (G) refer to an arbitrary element in - that

takes the maximal 5 -value. Algorithm and game parameters are

introduced in the Algorithm descriptions.

We start with coevolutionary algorithms, following PDCoEA (Al-

gorithm 1) with two algorithms we use to gauge the value of a

population size greater than one: Pairwise Dominance (1+1) EA (Al-

gorithm 2) and (1,_) CoEA (all-vs-all worst) (Algorithm 3)

3.1 Coevolutionary Algorithms

The basis of Algorithm 1 and Algorithm 2 is selection at the level

of pairs of opposing players. In each selection step, the algorithms

compare two pairs of opponents and select the “dominating” pair.

De�nition 3.1 ([16]). Given two functions61, 62 : X×Y → R and
two pairs (G1, ~1), (G2, ~2) ∈ X ×Y, we say that (G1, ~1) dominates

1028

GECCO ’23, July 15–19, 2023, Lisbon, Portugal

(G2, ~2) w.r.t. 61 and 62, denoted (G1, ~1) ⪰6 (G2, ~2), if and only if

61 (G1, ~1) ≥ 61 (G2, ~1) and 62 (G1, ~1) ≥ 62 (G1, ~2).

De�nition 3.1 is an immediate generalization of the maxmin-

dominance relation de�ned in [16] (De�nition 2) for the special

case where the second payo� function is 62 (G,~) := −61 (G,~).
The pseudo-code for the pairwise dominance (1+1) EA and the

(1,_) CoEA (all-vs-all worst) is in Appendix C.

Algorithm 1 Pairwise Dominance CoEA (PDCoEA) [16]

Require: Payo� functions 61, 62 : {0, 1}= × {0, 1}= → R.
Require: Population size _ ∈ N and mutation rate j ∈ (0, =]
1: for 8 ∈ [_] do
2: Sample %0 (8) ∼ Unif ({0, 1}=)
3: Sample &0 (8) ∼ Unif ({0, 1}=)
4: for C ∈ N until termination criterion met do

5: for 8 ∈ [_] do
6: Sample (G1, ~1) ∼ Unif (%C ×&C)
7: Sample (G2, ~2) ∼ Unif (%C ×&C)
8: if (G1, ~1) ⪰6 (G2, ~2) then
9: (G,~) := (G1, ~1)
10: else

11: (G,~) := (G2, ~2)
12: Obtain G ′ by �ipping each bit in G with prob. j/=.
13: Obtain ~′ by �ipping each bit in ~ with prob. j/=.
14: Set %C+1 (8) := G ′ and &C+1 (8) := ~′.

3.2 Multi-Resource DefendIt

An instance of the multi-resource DefendIt game is given by a

tuple (:, ℓ, E, 2, �� , ��) where : ∈ N is the number of resources,

ℓ ∈ N is the number of time-steps, E = (E (1) , . . . , E (:)) where
E (9) ∈ [0,∞) is the value of resource 9 ∈ [:], 2 = (2 (1) , . . . , 2 (:))
where 2 (9) ∈ [0,∞) is the cost of resource 9 ∈ [:], �� ∈ [0,∞) is
the defender’s budget, and �� ∈ [0,∞) is the attacker’s budget.

Defender and attacker strategies are represented by bitstrings of

length = := : · ℓ . We adopt the notation

G = (G (1)1 , . . . , G
(1)
ℓ , . . . , G

(:)
1 , . . . , G

(:)
ℓ) ∈ {0, 1}=

for the defender’s strategy, where G
(9)
8 = 1 for 9 ∈ [:] and 8 ∈ [ℓ]

means that the defender attempts to acquire resource 9 at time 8 .

~ = (~ (1)1 , . . . , ~
(1)
ℓ , . . . , ~

(:)
1 , . . . , ~

(:)
ℓ) ∈ {0, 1}=

for the attacker’s strategy, where ~
(9)
8 = 1 for 9 ∈ [:] and 8 ∈ [ℓ]

means that the attacker attempts to acquire resource 9 at time 8 .

We will de�ne the payo� of strategies in terms of the ownership

of the resources. In particular, I
(9)
8 ∈ {0, 1} is the ownership of

resource 9 ∈ [:] at time 8 ∈ {0} ∪ [ℓ], where I (9)8 = 1 indicates

that the defender owns resource 9 at time 8 , and I
(9)
8 = 0 means

that the attacker owns resource 9 at time 8 . For all 9 ∈ [:], we
de�ne I

(9)
0 (G,~) := 1, which corresponds to the assumption that

the defender is in possession of all resources at the beginning of

the game.

Table 1: Ownership outcomes and color codings for the 4

combinations of moves on a single resource in DefendIt (and

FlipIt).

Defender/Attacker 0 1

0 Previous owner (Unchanged) Attacker owns
1 Defender owns Previous owner

The evolution of the ownership of a resource 9 is de�ned induc-

tively for 8 ∈ [ℓ] as follows

I
(9)
8 (G,~) :=





I
(9)
8−1 (G,~) if G

(9)
8 = ~

(9)
8 ,

1 if G
(9)
8 = 1 and ~

(9)
8 = 0,

0 if G
(9)
8 = 0 and ~

(9)
8 = 1.

(1)

Table 1 describes ownership outcomes for the move combina-

tions in DefendIt. Because these combinations will be color-coded

in Section 6.2, the colorings are noted here for reference. Intuitively,

this means that if a player attempts to acquire the resource while

the opponent does not, the player obtains the resource. If neither

the defender or attacker move, the ownership does not change. If

both the defender and the attacker attempt to acquire the resource,

the defender gets or retains ownership.

The overall cost of a defender or an attacker strategy G is

� (G) :=
:∑

9=1

2 (9)
ℓ∑

8=1

G
(9)
8 ,

i.e., the number of attempts to acquire a resource weighted by the

cost of that resource. A defender strategy G is called over-budget if

� (G) > �� . Similarly, an attacker strategy ~ is called over-budget if

� (~) > �� .

Finally, the payo� function 61 for the defender (respectively 62
for the attacker) are de�ned as

61 (G,~) :=
{∑:

9=1 E
(9) ∑ℓ

8=1 I
(9)
8 (G,~) if � (G) ≤ ��

−∑:
9=1

∑ℓ
8=1 G

(9)
8 otherwise

62 (G,~) :=
{∑:

9=1 E
(9) (ℓ −∑ℓ

8=1 I
(9)
8 (G,~)) if � (~) ≤ ��

−∑:
9=1

∑ℓ
8=1 ~

(9)
8 otherwise.

Informally, if the overall cost of a strategy exceeds the player’s

budget (over-budget strategy), the payo� is minus the number of

times the player attempts to acquire any resource. Note that the

payo� function for an over-budget defender strategy is independent

of the attacker strategy, and isomorphic to theOneMax problem [6],

and similarly for over-budget attacker strategies. If the overall cost

of a strategy is within the budget (within-budget strategy), then

the payo� is the number of time steps the player is in possession

of the resource multiplied by the value of the resource.

We now proceed to analyze the hardness of �nding an optimal

player strategy.

4 DEFENDIT HARDNESS

DefendIt has a non-trivial problem structure. The following theo-

rem implies that, assuming P≠NP, it is computationally intractable

to �nd optimal (with respect to a �xed opponent) strategies to

DefendIt. The proof is in Appendix D.

1029

GECCO ’23, July 15–19, 2023, Lisbon, Portugal Lehre, et al.

Theorem 4.1. The decision problem to determine whether a de-

fender (or attacker) strategy of DefendIt can achieve a given payo�

value for a �xed opponent is NP-complete.

This paper only consider DefendIt instances where the cost of

an item is identical to the value of the resource. In the context of

Theorem 4.1, this corresponds to the NP-hard subset sum problem

which is a special case of the knapsack problem. Hence, the decision

variant of DefendIt is still NP-complete for our choice of costs.

Note that if the cost values satis�es 2 (9) ∼ Gamma(U, \), i.e., in-
dependent gamma-distributed random variables with shape param-

eter U and scale parameter \ , then the expected cost of a uniformly

sampled search point G is

� [� (G)] =
:∑

9=1

ℓ∑

8=1

�
[
2 (9)

]
�
[
G
(9)
8

]
= =U\/2. (2)

In the special case of scale parameter U = 1, the cost values are

exponentially distributed with rate 1/\ . The cumulative distribution

function in this special case is therefore for G > 0

Pr
(
2 (9) ≤ G

)
= 1 − 4−G/\ . (3)

Note furthermore that for all 2 > 0, if - ∼ Gamma(U, \), then
2- ∼ Gamma(U, 2\). Furthermore, for : independent random vari-

ables. - 9 ∼ Gamma(U 9 , \), it holds
∑:

9=1 - 9 ∼ Gamma(∑:
9=1 U 9 , \)

Hence, if the cost values are distributed 2 (8) ∼ Gamma(U, \), then
the cost of any given a �xed strategy G with |G (9) | = A 1-bits for

each 9 ∈ [:] has distribution

� (G) ∼ Gamma(:U, \A) . (4)

The same holds for defenders.

5 EXPERIMENTAL METHODOLOGY

Due to the NP-hardness of the relative payo� functions (cf Theo-

rem 4.1), it is intractable to compare how close PDCoEA strategies

are to the optimum. Also, it may be meaningless to compare strate-

gies with randomly chosen strategies. This dilemma also occurs in

more complex versions of coevolutionary algorithms.

We therefore develop a methodology where the performance

of an algorithm A is compared relative to one or more reference

algorithms B. We runA and all the algorithms of B independently

for the same number of function evaluations and collect “champion”

defenders and attackers at regular time intervals, speci�ed by a

period length g . We then evaluate the individuals in the population

of an algorithm at a time C against the champions collected from

both algorithms up until time C .

We now describe this methodology formally. Assume that after

generation C , algorithms A and B have predator-prey populations

(%A
C , &A

C) ∈ X_A × Y_A , respectively (%B
C , &B

C) ∈ X_B × Y_B ,

where _A and _B refer to the population sizes of the algorithms.

Since the two algorithms may have di�erent population sizes

(i.e., _A ≠ _B), and it may be impossible to obtain individuals half-

way through a generation, we collect the 8-th period champions

from algorithm A in generation

)A
8 := min{8 ∈ N | A has made at least 8g fevals after gen. 8}

and the 8-th period champions from algorithm B in generation

) B
8 := min{8 ∈ N | B has made at least 8g fevals after gen. 8}

Recall that g refers to the period length, which is a parameter of the

method. We use the abbreviation fevals for function evaluations.

The defender champions in the 8-th period are

DA
8 := argmax

G∈%A
)
A
8

min
~∈&B

)
B
8

61 (G,~), and DB
8 := argmax

G∈%B
)
B
8

min
~∈&A

)
A
8

61 (G,~).

Similarly, the attacker champions in the 8-th period are

EA8 := argmax
~∈&A

)
A
8

min
G∈%B

)
B
8

62 (G,~), and EB8 := argmax
~∈&B

)
B
8

min
G∈%A

)
A
8

62 (G,~).

The combined defender champions*8 and attacker champions +8
after 8 periods are

*8 := ∪8C=0
{
DA
C , DB

C

}
and +8 := ∪8C=0

{
EAC , EBC

}

Finally, the defender-performance �A
8 of algorithm A rela-

tive to algorithm B in the 8-th period (respectively the defender-

performance �B
8 of algorithm B relative to algorithm A) is now

de�ned as

�A
8 := max

G∈%A
)
A
8

min
~∈+8

61 (G,~) and �B
8 := max

G∈%B
)
B
8

min
~∈+8

61 (G,~) .

Similarly, the respective attacker performances of the two algo-

rithms in period 8 are de�ned as

�A
8 := max

~∈&A
)
A
8

min
G∈*8

62 (G,~) and �B
8 := max

~∈&B
)
B
8

min
G∈*8

62 (G,~) .

6 EXPERIMENTS

There are two algorithmic parameters we vary to study their impact:

population size _ and mutation rate j . We also choose nominal

values of _ = 500 and mutation rate j = 0.3 when we study other

factors, unless noted otherwise. Taking into account condition (G2b)

of Theorem 3 in [16], we deemed this population size to be su�-

ciently large, although we do not have a formal proof that condition

(G2) is satis�ed. This mutation rate is below the error threshold for

PDCoEA of approximately ln(2) identi�ed in Theorem 15 in [16].

We set the number of resources to: = 10 after some experimenta-

tion that considered the complexity of the resulting dynamics (other

problem sizes show no signi�cant change, see Figure 10 in the sup-

plementary material). We set the time steps in a DefendIt game to

ℓ = 40. Hence, the strategies are represented by bitstrings of length

= = :ℓ = 400. The number of games (fevals) in a run is 2 ·106, unless
noted otherwise. This was determined by experimental observation

that payo�s were relatively steady for a long duration. We varied

resource costs (with ownership payo� being equal to resource cost)

and decided upon a way to hold them steady across all experiments

presented in the main paper. The cost of resource 8 ∈ [40] is -8
where -8 is an independently sampled gamma-distributed random

variable with shape parameter U = 1, and scale parameter \ = 200.

The resource values and cost are identical.

We use the champions methodology of Section 5 unless other-

wise noted, setting the period length to g = 10, 000. Our champions

have the best-worst case (minmax) payo�, unless otherwise noted.

We repeat each experiment at least 50 times aiming for 100 unless

1030

GECCO ’23, July 15–19, 2023, Lisbon, Portugal

computationally they are too costly. We use Kruskal-Wallis when

we test for statistically signi�cant di�erences (p-value < 0.01).

We study one game parameter, the budgets for the attacker and

defender. We also explore budgets’ interaction with mutation rates.

When budgets are not integral to the study question, we make

them equal and specify their values from the set {�low := 280,

�med := 2, 800, �high := 28, 000}

6.1 Population Size

6.1.1 Is a population be�er than evolving a single A�acker - Defender

pair? We start by comparing PDCoEA to the two single individual

algorithms described in Section 3.1, Pairwise Dominance (1+1) EA

and (1,_) CoEA (all-vs-all worst) using the champions methodology

of Section 5 with period g = 10, 000.

A is either PD (1+1) EA or (1,_) CoEA and the PDCoEA is the

lone reference algorithm B. For fair comparison, both the PDCoEA

and the (1,_) CoEA use mutation rate j = 3/10 and population size

_ = 500. For the PD (1+1) EA, we use mutation rate j = 1 which is

standard for the (1+1) EA.

The results are shown in Figures 2a and 2b. The �gures show

boxplots of the defender payo� �A
8 of algorithm A (red) over

100 independent runs, and the maxmin (best worst case) defender

payo� �B
8 of the reference algorithm PDCoEA (in blue). Plots are

truncated at 500, 000 function evaluations since the payo�s do not

change much after this. Attacker payo�s show qualitatively the

same behavior so they are not plotted. In Figure 2b PD (1+1) EA

starts with signi�cantly better payo� than PDCoEA (0 - 20, 000

fevals), then (30, 000 - 50, 000) there is no signi�cant di�erences,

then PDCoEA is signi�cantly better (50, 000 - 500, 000 fevals). (1,_)

CoEA is slightly di�erent in Figure 2b, �rst (0 - 20, 000 fevals) there

is no signi�cant di�erence then PDCoEA is signi�cantly better. In

addition, the (1,_) CoEA takes more fevals to reduce the variance

of the best individual.

To summarize, after 50, 000 �tness evaluations, a population-

based CoEA generates statistically higher payo�s for a defender.

6.1.2 Does Incrementally Increasing Population Size Result in Higher

Payo�s? We ask whether a slightly larger population is better. This

question can be posed at each time interval g .

For Algorithm A we chose PDCoEA with population size _ ∈
{1, 2, . . . , 100}. As reference algorithm B, we chose the PDCoEA

with population size _ = 300. Both algorithms used mutation rate

j = 0.3. The plots in Figure 3 show �A
8 (left) and �A

8 as a function

of population size (_) and �tness evaluations (time).

We �rst visually observe that larger population sizes generate

higher payo� values. We then statistically test the distribution of

minmax payo� values when the population size (_) is increased (Δ_).

We �nd that 72% of defenders and 77% of attackers signi�cantly

improve their payo� when the increase is one (Δ_ = 1). In addition,

95% of defenders and 87% of attackers signi�cantly improve when

the increase is two (Δ_ = 2).

We can also ask whether a larger population leads to higher

payo�s at the end of a run. Statistically, we �nd that the minmax

payo� does not change signi�cantly after the payo� has stabilized,

i.e., (the payo�s exhibit no signi�cant di�erence). The defenders

take an average of 7.63 · 106 fevals to stabilize, and attackers take

an average of 5.616 · 106 fevals to get payo�s to stabilize.

10000 60000 120000 180000 240000 300000 360000 420000 480000

0
1
0
0
0
0

3
0
0
0
0

Defender FlipIT B_d=28000 B_a=28000

Time (f_evals)

m
a
x
im

in
−

p
a
y
o
ff

10000 60000 120000 180000 240000 300000 360000 420000 480000

0
1
0
0
0
0

3
0
0
0
0

PD (1+1) EA
PDCoEA

(a) PDCoEA and PD(1+1) EA.

10000 60000 120000 180000 240000 300000 360000 420000 480000

0
1
0
0
0
0

3
0
0
0
0

Defender FlipIT B_d=28000 B_a=28000

Time (f_evals)
m

a
x
im

in
−

p
a
y
o
ff

10000 60000 120000 180000 240000 300000 360000 420000 480000

0
1
0
0
0
0

3
0
0
0
0

(1,lambda) CoEA
PDCoEA

(b) PDCoEA and PD (1,_) EA

Figure 2: Comparing algorithms. X-axes show the number of

�tness evaluations and y-axes show the best worst case (min-

max) defender payo� at di�erent times.

60 80 120 160 200

2
0

4
0

6
0

8
0

1
0
0

Defender (28000)

Time (f_evals)

P
o
p
u
la

ti
o
n
 s

iz
e
 (

la
m

b
d
a
)

24000

25000

26000

27000

28000

29000

30000

60 80 120 160 200

2
0

4
0

6
0

8
0

1
0
0

Attacker (28000)

Time (f_evals)

26000

28000

30000

32000

Figure 3: population size (Y-axis) and fevals (X-axis) , the color

shows the payo� of themean of the best worst case (maxmin)

payo� against a PDCoEA (_ = 300). Note, the �rst 500, 000

fevals are removed to improve the color range.

To summarize, at modest populations sizes, small increments

result in higher payo�s at each time interval but they do not lead

to higher payo�s at the end of a run.

6.2 PDCoEA Single Run Dynamics

We now investigate what happens to the PDCoEA population over

a run in terms of strategies and payo�s. Drawing intuitions from

payo�s of a CoEA run can be misleading because 1) payo�s are

relative to a set of competitors (at the current time point/generation

1031

GECCO ’23, July 15–19, 2023, Lisbon, Portugal Lehre, et al.

(a) Gen 14 (4 200 fevals) (b) Gen 647 (194 100 fevals)

Figure 4: Left of each sub�gure: each row is the move combinations arising
from a pair of attacker’s and defender’s strategies. Combinations are color
coded, blue: D=0, A=0;cyan: D=1, A=0;orange: D=0 A=1;red: D=1 A=1. All pairs
of defenders versus attackers in a generation are shown. Right pane is the
same as Figure 5. Figure 4a shows an early generation and Figure 4b a later
generation when median payo�s have stabilized.

of the algorithm) and the same strategy’s payo� can change from

one time point to the next (generation to the next) as its competitors

evolve, or 2) payo�s can look steady but the underlying strategies

that garner the payo�s may have changed.

Oneway to eliminatemisconceptions is to visualize the strategies

and their evolution over time while simultaneously visualizing pay-

o�s over time.We do this in Figure 41 which shows two snapshots of

the population Figure 4a at Gen 14 after 4, 200 fevals and Figure 4b

at Gen 647 after 194, 100 fevals. The budget is ��
high

= ��
high

for this

particular run. In each snapshot the visualization on the left, our

“move plot” color codes the move combinations for every resource

in a loci of the bit string, for a pair of defender and attacker, along

the x-axis. See Table 1 for the color move coding. Along the y-axis

it shows each move combination pair in the generation (from Line 5

in Algorithm 1). (For more informative visualization, and without

loss of accuracy, we arbitrarily group engagements and then sort

the groups by color.) In each snapshot the heatmap on the right

shows the same run’s payo�s for “within-budget” defenders (y-axis)

in population vs the attacker (x-axis) population in that generation.

We can �rst examine the coupling of the move plot and heat map.

At Gen 14 we observe a lot of variation in move combinations from

high to low (i.e., across the two populations) and we discern 4 fuzzy

vertical columns of color (blue and light blue on left, and orange

and red on right) with a 5th column of mixed colors in the middle.

The genotype’s loci are ordered by resources with decreasing cost

(and it sequences moves for all time steps, for each resource). These

columns correspond to selection of resources of di�erent payo�s

(since cost and payo� are equal in our game settings). If we compare

columns across the populations (i.e. moving up the y-axis), we

observe that the move combinations of two competing strategies

don’t consistently protect or try to claim ownership of the same

resource. Concurrently, we can factor in the heat map of payo�s

for the defender. We note that there are more extreme payo�s

with a lower horizontal section that is blue (lower payo�s) and a

vertical right-side section that is red. The variation we see in move

combinations is complemented by variation in payo�s.

1Videos of snapshots with two runs are shown in the supplementary material.

Defender payoff (gen=650)

Attacker28000 30000 32000 34000

Defender payoff (gen=651)

Attacker28000 30000 32000 34000

Defender payoff (gen=652)

Attacker28000 30000 32000 34000

Defender payoff (gen=653)

Attacker28000 30000 32000 34000

Defender payoff (gen=654)

Attacker28000 30000 32000 34000

Defender payoff (gen=655)

Attacker28000 30000 32000 34000

Defender payoff (gen=656)

Attacker28000 30000 32000 34000

Defender payoff (gen=657)

Attacker28000 30000 32000 34000

Defender payoff (gen=658)

Attacker28000 30000 32000 34000

Defender payoff (gen=659)

Attacker28000 30000 32000 34000

Attacker payoff (gen=650)

Attacker30000 32000 34000 36000 38000

Attacker payoff (gen=651)

Attacker30000 32000 34000 36000 38000

Attacker payoff (gen=652)

Attacker30000 32000 34000 36000 38000

Attacker payoff (gen=653)

Attacker30000 32000 34000 36000 38000

Attacker payoff (gen=654)

Attacker30000 32000 34000 36000 38000

Attacker payoff (gen=655)

Attacker30000 32000 34000 36000 38000

Attacker payoff (gen=656)

Attacker30000 32000 34000 36000 38000

Attacker payoff (gen=657)

Attacker30000 32000 34000 36000 38000

Attacker payoff (gen=658)

Attacker30000 32000 34000 36000 38000

Attacker payoff (gen=659)

Attacker30000 32000 34000 36000 38000

Figure 5: Population dynamics illustrated by payo� matrices for defender
population vs attacker populations over 10 generations. Only within-budget
defenders are shown. The top row shows heatmaps (payo� matrix) for the
Defender payo� and bottom row shows the Attacker payo�. Each column
is a generation, 650-659 (fevals: 195, 000 - 197, 700). Over-Budget payo�s are
shown as white. A heatmap shows the payo� value (color) for each attacker
against each defender in each cell. The individuals in the population are
ranked according to average payo�. The defender population is on the y-axis
and the attacker population is on the x-axis in each heatmap.

When we examine Gen 647’s move plots we observe very cleanly

separated columns of the 4 distinct move combinations and the 5th

column of Gen 14 does not appear. It appears themove combinations

have di�erentiated the di�erent payo� values of the resources. They

are not competing for the highest cost resources, they are iterating

control of the mid-cost resources and competing head to head for

the lowest cost ones. This organization can be juxtaposed with the

defender’s payo� heat map that shows a large number of middle

valued game payo�s and relatively fewer extreme (lower or upper)

payo�s. The range of payo�s seen in Gen 14 has shrunk.

The insight value of these comparisons, whether within a pair or

across generations is limited because they are snapshots. Obviously,

single generations snapshots can be assembled into animations.

Because animations cannot be inserted into a document, we provide

a number of these animations in our supplemental material where

we vary budgets for the players. At the time of submission, a clear

analysis of the animation de�es the authors. We (wryly) observe

that when we add complexity to an analysis, with coevolutionary

algorithms, clear analysis can quickly decrease.

We can however pursue a facet of the more complex animations.

Figure 5 shows the population dynamics of one experiment for

generations 650 to 659 by plotting the payo� values of the within-

budget individuals for attackers (top) and defenders (bottom). We

chose these generations because at this point, the average popula-

tion �tness was stabilized. All PDCoEA runs stabilize so these plots

are representative (of the stable phase).

We can observe the payo� transition of each individual heatmap.

The color gradient is quite consistent with blue in the bottom and

left changing to green to yellow to red in the top and right. Viewing

strictly by row (column), we also see monotonic payo� increase.

Next, we can look along the columns of the �gure to compare

pairs of defender and attacker heatmaps at the same generation.

They look quite symmetrical in color distribution, even though the

values are di�erent (the visualizations use di�erent scales).

Finally, we can examine the payo�s over time, i.e., dynamics. We

see that for both rows, the �rst column has a more uniform distribu-

tion of colors (values) compared to the last column (10 generations

1032

GECCO ’23, July 15–19, 2023, Lisbon, Portugal

272700 273300 273900 274500 275100
t

15

20

25

30

35

M
ed

ia
n

pa
yo

ff
in

th

e
po

pu
la

tio
n

(x
10

3) Attacker Defender

Figure 6: Fluctuations of payo� in the populations (attacker

solid line, defender dashed line) shown for median attacker

payo� (left y-axis) and defender (right y-axis) for �tness

evaluations 272, 700 − 276, 600 for one experiment.

later). We see that this changes gradually to be less uniform for

each generation. This means that the diversity of payo�s in the pop-

ulation is decreasing. At Gen 650 there are fewer strong attackers

and defenders in the population compared to at Gen 659. There are

more weak defenders and weak attackers in Gen 650 compared to

Gen 659. Note also that the change in height/width of the heatmap

means that the number of over-budget individuals is �uctuating.

The population dynamics can also be observed at a larger time

scale (more �tness evaluations). Figure 6 illustrates the coupling

and �uctuations of the population payo�s by showing the me-

dian attacker and defender payo� over time (�tness evaluations

272, 700 − 276, 600) for one experiment.

To this point, we have not varied any parameters of the game or

the algorithm beyond our population size exploration. To explore

the impact of problem scale, we explored the problem parameters

: = ℓ =
√
= for = ∈ {40, 80, 120, . . . , 2, 000}. Results are not shown

as problem size has no signi�cant impact on run dynamics.

6.3 Impact of Budget Levels

To experimentally study the impact of budget levels we �rst need

to minimize confounding e�ects of the relationship between prob-

lem size and budget, making the budgets independent of prob-

lem size. To do this we set the cost of each resource to be dis-

tributed by 2 (9) ∼ Gamma(U (:), \ (ℓ)) where U (:) := 10/: and

\ (ℓ) := 8, 000/ℓ . Note that for a problem size = = : · ℓ , by (Eq. 4),

the cost of any �xed strategy G = (G (1) , . . . , G (:)) with |G (9) | = ℓ/2
for each 9 ∈ [:] (corresponding to the expected number of 1-

bits in a uniformly sampled strategy) has distribution � (G) ∼
Gamma(:U (:), \ (ℓ)ℓ/2) = Gamma(10, 4000), i.e., the distribution
is independent of the problem size =. In particular, for this setting,

we get for the �xed bitstring G above Pr
(
� (G) ≤ �high

)
≈ 0.169504

and Pr (� (G) ≤ �med) ≈ 4.1267 · 10−9.
Appropriate population sizes for PDCoEA are currently not well

understood. We rely on advice from results for non-elitist evolution-

ary algorithm applied to pseudo-Boolean optimization, where the

population size must be chosen such that _ ≥ 2 ln(=) (see condition
(G3) of Theorem 1 in [5]). Here, we set population size _ := 50 ln(=).
All experiments were run for 2 · 106 function evaluations.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
t 1e6

−30000

−20000

−10000

0

10000

20000

30000

Pa
yo

ff
in

 th
e

po
pu

la
tio

n
(a

tk
)

Budget comparison (Equal budget)

28000
2800
280

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
1e6

−30000

−20000

−10000

0

10000

20000

30000

Pa
yo

ff
in

 th
e

po
pu

la
tio

n
(d

ef
)

Figure 7: Median population payo� (y-axis) with shaded quartiles for di�erent bud-
gets (Lines) over time (x-axis) for attacker (top) and defender (bottom). There are three
budget levels for equal budgets. The vertical lines indicate the population phase composi-
tion borders.

6.3.1 Impact Findings. Our �ndings are shown in Figure 7. Each

plot line shows a defender’s median population member’s pay-

o� for a di�erent pairing of equal budget levels. (Recall that all

the �gures show the average of 100 runs.) Across budgets, we

observe a clear di�erence between the quantity of �tness evalua-

tions it takes to reach di�erent payo� levels. Zooming in, we can

also ascertain payo� phases which the �gure marks with vertical

lines. These phases are: all-over-budget, {G ∈ - |∀� (G) > �},
one-within-budget (there exists at least one individual within-

budget), {G ∈ - |∃� (G) < �}, majority-within-budget (the me-

dian individual is within-budget), � (med{- }) < �, and

payoff-stalemate (the median payo� slope is negative).

The vertical lines in Figure 7 show these phase boundaries.

This makes it easier to discern that a higher budget allows the

median population member to use fewer �tness evaluations to

reach the one-within-budget payo� phase, as well as reach the

majority-within-budget and payoff-stalemate phases. In ad-

dition, the �tness evaluations usages are similar between attacker

and defender. Note that the shaded portions of the plot lines for

��
low

and ��
med

indicate that there are over-budget solutions in the

3rd quartile of the population.

Figure 8 compares the mean population payo� for attacker and

defender over time with �low for attackers and 3 levels of budgets

for defenders. With a higher defender budget it takes fewer �tness

evaluations to reach a population which has at least one within-

budget individual, as well as to reach a payo� stalemate for both

attacker and defender. The shaded portions of the line plots for ��
med

indicate that there are over-budget solutions in the 3rd quartile of

the population up to ≈ 50, 000 �tness evaluations.

Having explored budgetary impacts, we next consider the impact

of mutation rates on payo�s while also varying budget levels.

6.4 Mutation Rates and the Error Threshold

Figure 9 shows �A
8 (defender maxmin payo�) and �A

8 (attacker

maxmin payo�) as a function of time (fevals), mutation rate j ,

and di�erent combinations of defender and attacker budgets ��

1033

GECCO ’23, July 15–19, 2023, Lisbon, Portugal Lehre, et al.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
t 1e6

−30000

−20000

−10000

0

Pa
yo

ff
in

 th
e

po
pu

la
tio

n
(a

tk
)

Budget comparison (Attacker budget = 280)
28000
2800
280

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
1e6

−30000

−20000

−10000

0

10000

20000

30000

Pa
yo

ff
in

 th
e

po
pu

la
tio

n
(d

ef
)

Figure 8: ��∗ vs ��
low

, Median population payo� (y-axis) with shaded quartiles for di�erent

budgets (Lines) over time (x-axis) for attacker (top) and defender (bottom). There are three
budget levels �low (280), �med (2, 800) and �high (28, 000), the budget combinations are the

same as in Figure 9.

and �� . The subcaptions in Figure 9 show j�
�
thresholds for the

mutation rate to have a majority of within-budget attackers, and

j�
�
defenders.

The error threshold, as identi�ed by the mutation rate (j) is

a�ected by the player budget. Note, the change in payo� for di�er-

ent j is mostly signi�cant. An increase in player budget changes

the error threshold when the adversary has a �xed budget, e.g.,

j�
�

≤ 0.44, �low for defender (Figure 9a), to j�
�

≤ 0.68, �med for de-

fender (Figure 9d). The error threshold is also impacted by a change

in the budget of the adversary, e.g., j�
�

≤ 0.44, �low for defender

and j�
�
≤ 0.73, �med for attacker (Figure 9b), to j�

�
≤ 1.0, �high for

attacker (Figure 9f). In addition, we observe that error threshold

changes from �low to �med the error threshold increases (low val-

ues of j have high payo�), but from �med to �high higher values of

j have higher payo� than lower. Note, that with a higher mutation

rate j > 1.0 for �∗
high

the error threshold will be reached.

One can interpret the plots as indicating that change in budget

is a proxy for an arms-race, i.e., equilibrium search with increasing

budgets. The arms-race approximation provides information re-

garding the setting of mutation rates j for the PDCoEA algorithm.

By following column/row we see how the payo� changes based on

adversary budget increase, and static player budget. For example,

the top-left to bottom-right diagonal (Figures 9a, 9e, and 9i) show

how the payo� changes in an arms-race with equal budget.

A possible explanation for the error threshold for di�erent bud-

gets is that it depends on the number of within-budget individuals.

With �low most bits will need to be zero in order for the individual

to be within-budget. This bias towards zeros implies that within-

budget individuals are con�ned to a narrow region of the search

space. Individuals can only approach such narrow regions when the

mutation rate is su�ciently low (cf. parameter 1 (=) in Theorem 4 in

[15]). When the budget is increased to �high then the bias towards

zeros is removed and individuals can enter a larger region of the

search space, allowing for a higher mutation rate.

60 80 120 160 200

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Defender (280)

Time (f_evals)

M
u
ta

ti
o
n
 r

a
te

 (
c
h
i)

−5000

−4000

−3000

−2000

−1000

0

1000

60 80 120 160 200

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Attacker (280)

Time (f_evals)

−4000

−2000

0

2000

(a) ��
low

(0.44) |��
low

(0.44)

60 80 120 160 200

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Defender (280)

Time (f_evals)

M
u
ta

ti
o
n
 r

a
te

 (
c
h
i)

−5000

−4000

−3000

−2000

−1000

0

1000

60 80 120 160 200

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Attacker (2800)

Time (f_evals)

−4000

−2000

0

2000

4000

(b) ��
low

(0.44) |��
med

(0.73)

60 80 120 160 200

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Defender (280)

Time (f_evals)

M
u
ta

ti
o
n
 r

a
te

 (
c
h
i)

−5000

−4000

−3000

−2000

−1000

0

60 80 120 160 200

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Attacker (28000)

Time (f_evals)

35000

36000

37000

38000

39000

(c) ��
low

(0.60) |��
high

(1.0)

60 80 120 160 200

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Defender (2800)

Time (f_evals)

M
u
ta

ti
o
n
 r

a
te

 (
c
h
i)

−6000

−4000

−2000

0

2000

4000

60 80 120 160 200

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Attacker (280)

Time (f_evals)

−6000

−4000

−2000

0

2000

(d) ��
med

(0.68) |��
low

(0.44)

60 80 120 160 200

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Defender (2800)

Time (f_evals)

M
u
ta

ti
o
n
 r

a
te

 (
c
h
i)

−6000

−4000

−2000

0

2000

4000

60 80 120 160 200

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Attacker (2800)

Time (f_evals)

−6000

−4000

−2000

0

2000

4000

(e) ��
med

(0.68) |��
med

(0.70)

60 80 120 160 200

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Defender (2800)

Time (f_evals)

M
u
ta

ti
o
n
 r

a
te

 (
c
h
i)

−4000

−2000

0

60 80 120 160 200

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Attacker (28000)

Time (f_evals)

34000

35000

36000

37000

38000

39000

(f) ��
med

(0.68) |��
high

(1.0)

60 80 120 160 200

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Defender (28000)

Time (f_evals)

M
u
ta

ti
o
n
 r

a
te

 (
c
h
i)

29000

30000

31000

32000

60 80 120 160 200

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Attacker (280)

Time (f_evals)

−6000

−4000

−2000

0

2000

(g) ��
high

(1.0) |��
low

(0.62)

60 80 120 160 200

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Defender (28000)

Time (f_evals)

M
u
ta

ti
o
n
 r

a
te

 (
c
h
i)

28000

29000

30000

31000

32000

33000

60 80 120 160 200

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Attacker (2800)

Time (f_evals)

−4000

−2000

0

2000

(h) ��
high

(1.0) |��
med

(0.72)

60 80 120 160 200

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Defender (28000)

Time (f_evals)

M
u
ta

ti
o
n
 r

a
te

 (
c
h
i)

27000

28000

29000

30000

31000

32000

60 80 120 160 200

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Attacker (28000)

Time (f_evals)

30000

32000

34000

36000

(i) ��
high

(1.0) |��
high

(1.0)

Figure 9: Payo� for di�erent error thresholds and budget sizes over time. A heatmap has
error threshold (Mutation rate j) on the y-axis and time (�tness evaluations) on the x-axis,
the cell shows the average payo� for a population. There is a heatmap for the attacker
and the defender each with the same or di�erent budget. There are three budget levels
�low , �med and �high to illustrate an arms-race and di�erent adversary capabilities. The

defender budget increases from top to bottom and the attacker budget increases from left to

right. The subcaption (value) j�
�

indicates the investigatedmutation rate to have amajority

of within-budget attackers, and j�
�

defenders. Larger �gure in Appendix Figure 13.

7 CONCLUSION

We introduced the NP-hard problem DefendIt and played with a co-

evolutionary algorithm named PDCoEA. DefendIt is more complex

than Bilinear [16], i.e., a simple representation that has high individ-

ual solution diversity, non-trivial payo� and dynamics. Despite the

simplicity of its genome (a loci per resource per time step), and just

4 moves and payo� rules, DefendIt is complicated, making it a good

choice to study. We showed that a population-based coevolutionary

algorithm, rather than single-individual EA, attains higher payo�s.

We developed a “moves plot” to see the move combinations of a

game step, and paired it with payo� heat maps. This allowed us to

notice more details about a single run at a snapshot in time. The

supplementary material includes an animation. We also varied the

adversaries’ budgets, exploring equal levels and asymmetric levels.

Finally, we explored the mutation rate’s impact on error threshold.

The population dynamics of PDCoEA on DefendIt show they do not

converge on a solution, but the payo�s are coupled and �uctuate.

We �nd that there are multiple distinct phases in the population

payo�. In addition, the mutation rate should be altered for better

payo� when the individual and adversaries’ budget change.

Future work will investigate a self-adapting mutation rate to see

if it evolves to the error threshold. We will study the solutions more

quantitatively, e.g., measure coevolutionary pathologies. Finally,

we will investigate more problem parameters, e.g., payo� function

and di�erent resource distributions.

ACKNOWLEDGMENTS

Lehre and Hevia Fajardo were supported by a Turing AI Fellowship

(EPSRC grant ref EP/V025562/1). The computations were performed

using the University of Birmingham’s BlueBEAR HPC service. See

http://www.birmingham.ac.uk/bear for more details. Toutouh was

supported by the University of Malaga.

1034

GECCO ’23, July 15–19, 2023, Lisbon, Portugal

REFERENCES
[1] Peter J. Angeline and Jordan B. Pollack. 1993. Competitive environments evolve

better solutions for complex tasks. In Proceedings of the Fifth International Con-
ference (GA93), Genetic Algorithms. 264–270.

[2] L. M. Antonio and C. A. C. Coello. 2018. Coevolutionary Multi-objective Evolu-
tionary Algorithms: A Survey of the State-of-the-Art. IEEE Transactions on Evo-
lutionary Computation (2018), 1–16. https://doi.org/10.1109/TEVC.2017.2767023

[3] Robert Axelrod. 1984. The Evolution of Cooperation. Basic, NY, New York.
[4] A. B. Cardona, J. Togelius, and M. J. Nelson. 2013. Competitive coevolution in

Ms. Pac-Man. In 2013 IEEE Congress on Evolutionary Computation. 1403–1410.
[5] Dogan Corus, Duc-Cuong Dang, Anton V. Eremeev, and Per Kristian Lehre. 2018.

Level-Based Analysis of Genetic Algorithms and Other Search Processes. IEEE
Transactions on Evolutionary Computation 22, 5 (Oct. 2018), 707–719. https:
//doi.org/10.1109/TEVC.2017.2753538

[6] Stefan Droste, Thomas Jansen, and Ingo Wegener. 2002. On the analysis of the
(1+1) evolutionary algorithm. Theoretical Computer Science 276, 1-2 (April 2002),
51–81.

[7] Paul R Ehrlich and Peter H Raven. 1964. Butter�ies and plants: a study in
coevolution. Evolution 18, 4 (1964), 586–608.

[8] Sevan Gregory Ficici. 2004. Solution concepts in coevolutionary algorithms. Ph. D.
Dissertation. Brandeis University.

[9] D Fogel. 2001. Blondie24: Playing at the Edge of Arti�cial Intelligence.
[10] David E. Goldberg. 1989. Genetic Algorithms in Search, Optimization and Machine

Learning (1st ed.). Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA.

[11] Sean N Harris and Daniel R Tauritz. 2021. Competitive coevolution for defense
and security: Elo-based similar-strength opponent sampling. In Proceedings of
the Genetic and Evolutionary Computation Conference Companion. 1898–1906.

[12] Erik Hemberg, Jacob Rosen, Geo� Warner, Sanith Wijesinghe, and Una-May
O’Reilly. 2016. Detecting tax evasion: a co-evolutionary approach. Arti�cial
Intelligence and Law 24 (2016), 149–182.

[13] Stephen T Jones, Alexander V Outkin, Jared Lee Gearhart, Jacob Aaron Hobbs,
John Daniel Siirola, Cynthia A Phillips, Stephen Joseph Verzi, Daniel Tauritz,
Samuel A Mulder, and Asmeret Bier Naugle. 2015. Evaluating moving target de-
fense with pladd. Technical Report. Sandia National Lab.(SNL-NM), Albuquerque,
NM (United States).

[14] Krzysztof Krawiec and Malcolm Heywood. 2016. Solving Complex Problems with
Coevolutionary Algorithms. In Proceedings of the 2016 on Genetic and Evolutionary

Computation Conference Companion. ACM, 687–713.
[15] Per Kristian Lehre. 2010. Negative Drift in Populations. In Proceedings of the

11th International Conference on Parallel Problem Solving from Nature (PPSN 2010)
(LNCS, Vol. 6238). Springer Berlin / Heidelberg, 244–253. https://doi.org/10.1007/
978-3-642-15844-5_25

[16] Per Kristian Lehre. 2022. Runtime Analysis of Competitive Co-Evolutionary
Algorithms for Maximin Optimisation of a Bilinear Function. In Proceedings of
the Genetic and Evolutionary Computation Conference (Boston, Massachusetts)
(GECCO ’22). Association for Computing Machinery, New York, NY, USA, 1408–
1416. https://doi.org/10.1145/3512290.3528853

[17] Chong-U Lim, Robin Baumgarten, and Simon Colton. 2010. Evolving behaviour
trees for the commercial game DEFCON. In European Conference on the Applica-
tions of Evolutionary Computation. Springer, 100–110.

[18] Sean Luke et al. 1998. Genetic programming produced competitive soccer softbot
teams for robocup97. Genetic Programming 1998 (1998), 214–222.

[19] Melanie Mitchell. 2006. Coevolutionary learning with spatially distributed popu-
lations. Computational intelligence: principles and practice 400 (2006).

[20] Gabriela Ochoa. 2006. Error Thresholds in Genetic Algorithms. Evolutionary
Computation 14, 2 (June 2006), 157–182. https://doi.org/10.1162/evco.2006.14.2.
157

[21] Una-May O’Reilly, Jamal Toutouh, Marcos Pertierra, Daniel Prado Sanchez, Den-
nis Garcia, Anthony Erb Luogo, Jonathan Kelly, and Erik Hemberg. 2020. Adver-
sarial genetic programming for cyber security: A rising application domain where
GP matters. Genetic Programming and Evolvable Machines 21 (2020), 219–250.

[22] Elena Popovici, Anthony Bucci, R. Paul Wiegand, and Edwin D. De Jong. 2012.
Coevolutionary Principles. Springer Berlin Heidelberg, Berlin, Heidelberg, 987–
1033.

[23] Christopher D Rosin and Richard K Belew. 1997. New methods for competitive
coevolution. Evolutionary Computation 5, 1 (1997), 1–29.

[24] Karl Sims. 1994. Evolving 3D morphology and behavior by competition. Arti�cial
life 1, 4 (1994), 353–372.

[25] J. Togelius, P. Burrow, and S. M. Lucas. 2007. Multi-population competitive
co-evolution of car racing controllers. In 2007 IEEE Congress on Evolutionary
Computation. 4043–4050.

[26] Marten van Dijk, Ari Juels, Alina Oprea, and Ronald L. Rivest. 2013. FlipIt: The
Game of "Stealthy Takeover". Journal of Cryptology 26, 4 (Oct. 2013), 655–713.
https://doi.org/10.1007/s00145-012-9134-5

1035

https://doi.org/10.1109/TEVC.2017.2767023
https://doi.org/10.1109/TEVC.2017.2753538
https://doi.org/10.1109/TEVC.2017.2753538
https://doi.org/10.1007/978-3-642-15844-5_25
https://doi.org/10.1007/978-3-642-15844-5_25
https://doi.org/10.1145/3512290.3528853
https://doi.org/10.1162/evco.2006.14.2.157
https://doi.org/10.1162/evco.2006.14.2.157
https://doi.org/10.1007/s00145-012-9134-5

